

AUTORITÀ DI BACINO REGIONALE

Valutazione preliminare del rischio di alluvioni e definizione delle aree a potenziale rischio significativo di alluvioni ai sensi degli art. 4 e 5 della Direttiva 2007/60/CE: secondo ciclo di gestione

# Allegato 1

## alla RELAZIONE METODOLOGICA

## Aggiornamento Giugno 2019



**DISTRETTO: SARDEGNA** 

## **INDICE**

|        |                                      | climatici a scala regionale - Aggiornamenti alla Strategia Regionale |          |
|--------|--------------------------------------|----------------------------------------------------------------------|----------|
| 1      | Adattamei                            | nto ai Cambiamenti Climatici della Regione Sardegna                  | 2        |
| 1.1    | Analisi clim                         | atica a scala regionale                                              | 2        |
| 1.2    | Valutazione                          | della vulnerabilità ai cambiamenti climatici                         | 5        |
| Indivi | iduazione                            | dei bacini predisposti a fenomeni di flash flood mediante indicatori | 11       |
| Verifi | ca dell'ap                           | plicabilità del metodo "Arno" al contesto regionale della Sardegna   | 11       |
| 1.1.   | Premessa                             |                                                                      | 11       |
| 1.2.   | Valutazione                          | delle piene in Sardegna                                              | 11       |
| 1.3.   | Piene dei pio                        | ccoli bacini e Flash flood                                           | 12       |
|        |                                      | a degli indicatori proposta                                          |          |
| 1.5.   | Applicazion                          | e ai bacini della Sardegna                                           | 14       |
|        | 1.5.1.<br>1.5.2.<br>1.5.3.<br>1.5.4. | Considerazioni preliminari                                           | 17<br>17 |
| 1.6.   | Risultati del                        | l'applicazione al bacino campione                                    | 20       |
| 1.7.   | Valutazione                          | critica dei risultati                                                | 25       |
| 1.8.   | Massime alt                          | ezze annue di pioggia giornaliera                                    | 29       |
| 10     | Ribliografia                         |                                                                      | 36       |

# I cambiamenti climatici a scala regionale – Aggiornamenti alla Strategia Regionale di Adattamento ai Cambiamenti Climatici della Regione Sardegna

### 1.1 Analisi climatica a scala regionale

La Regione Sardegna, con Deliberazione di Giunta Regionale n. 6/50 del 5 febbraio 2019, ha approvato la Strategia Regionale di Adattamento ai Cambiamenti Climatici (SRACC). L'All. 1 alla SRACC è costituito da uno studio di dettaglio, propedeutico all'elaborazione della Strategia, prodotto dalla Regione Sardegna nell'ambito di un accordo di collaborazione con l'Università di Sassari, studio che comprende un'analisi climatica a scala 8x8 Km (in coerenza con il PNACC). Lo studio presenta un'analisi dettagliata della situazione climatica della Regione, a partire da un dataset di osservazione sul periodo climatico di riferimento 1981-2010, e le proiezioni climatiche attese per il trentennio futuro 2021-2050. I due scenari climatici (RCP1) considerati rappresentano l'aumento, al 2100, della forzante radiativa ad un valore rispettivamente di 4,5 e 8,5 W/m2. Le proiezioni climatiche future, per il periodo 2021-2050 rispetto al periodo di riferimento 1981-2010, mostrano un generale aumento della temperatura media per entrambi gli scenari, più marcato secondo lo scenario RCP8.5, con un incremento fino a 2° C. In termini di precipitazione, le proiezioni con lo scenario RCP4.5 mostrano un aumento dei valori annuali a sud e ad est della Sardegna, mentre è attesa una riduzione nella parte centrale e nord-occidentale. D'altra parte lo scenario RCP8.5 mostra una generale riduzione della precipitazione annuale nella parte centrale e sud-occidentale, mentre è atteso un aumento altrove. Inoltre, in accordo con entrambi gli scenari RCP, gli indicatori meteoclimatici suggeriscono uno scenario futuro in cui le precipitazioni potrebbero essere concentrate in un numero limitato di eventi intensi.

.

<sup>&</sup>lt;sup>1</sup> Representative Concentration Pathway (RCP): rappresentano l'aumento, al 2100, della forzante radiativa ad un determinato valore.:

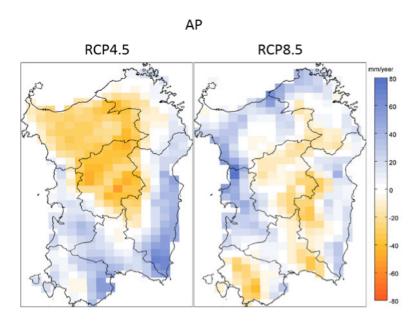



Figura 1 - Anomalie [mm/anno] dell'indicatore AP (Cumulata delle precipitazioni annuali) per il periodo 2021-2050, rispetto al periodo di riferimento 1981-2010, secondo gli scenari RCP4.5 e RCP8.5

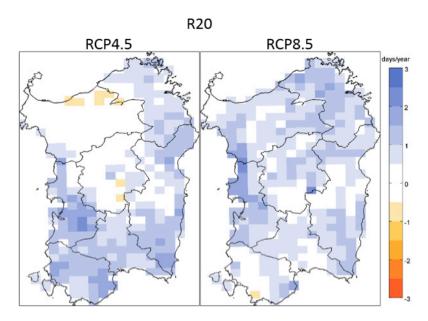



Figura 2 - Anomalie [giorni/anno] dell'indicatore R20 (Giorni di precipitazione intensa = Numero di giorni con precipitazione giornaliera superiore ai 20 mm) per il periodo 2021-2050, rispetto al periodo di riferimento 1981-2010, secondo gli scenari RCP4.5 e RCP8.5

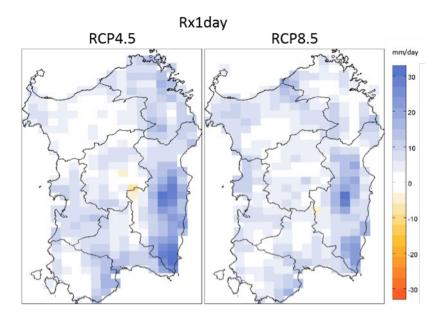
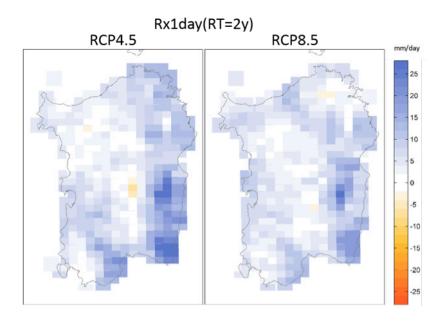




Figura 3 - Anomalie [mm/giorno] dell'indicatore Rx1day (Massimo di precipitazione giornaliera = Massimo valore di precipitazione giornaliera) per il periodo 2021-2050, rispetto al periodo di riferimento 1981-2010, secondo gli scenari RCP4.5 e RCP8.5



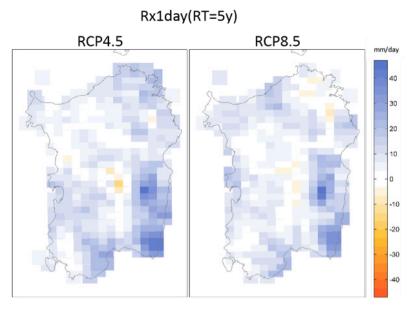



Figura 4 - Anomalie [mm/giorno] dell'indicatore Rx1day (Massimo di precipitazione giornaliera = Massimo valore di precipitazione giornaliera) con un tempo di ritorno di 2 e 5 anni per il periodo 2021-2050, rispetto al periodo di riferimento 1981-2010, secondo gli scenari RCP4.5 e RCP8.5

L'aumento dell'intensità degli eventi di precipitazione si evince anche dall'incremento dei valori di ritorno, per periodi di ritorno di 2 e 5 anni (Rx1day (RT=2y) e Rx1day (RT=5y) rispettivamente), come mostrato in Figura 5. Tali incrementi, maggiori considerando il tempo di ritorno di 5 anni, sono più marcati nella parte orientale della Sardegna, area in cui si ha anche un aumento delle precipitazioni più intense. In particolare, in accordo con entrambi gli scenari, per il valore di ritorno corrispondente ad un periodo di 2 anni è atteso un incremento di al più 25 mm, mentre considerando un periodo di ritorno di 5 anni è atteso un incremento di al più 40 mm.

Questi risultati sono in accordo con quanto affermato in precedenza, suggerendo uno scenario futuro in cui le precipitazioni potrebbero essere concentrate in un numero limitato di eventi intensi.

#### 1.2 Valutazione della vulnerabilità ai cambiamenti climatici

Lo studio di dettaglio allegato alla Strategia Regionale di Adattamento della Regione Sardegna riporta un'analisi di vulnerabilità sviluppata in relazione al settore "Assetto e rischi di natura idrogeologica del territorio". L'adeguamento del PGRA ai cambiamenti climatici deve, da un lato, far fronte ai limiti dei modelli climatici nella rappresentazione del regime di precipitazione e quindi a tutti gli aspetti insiti nella rappresentazione della pericolosità, dall'altro è intrinsecamente presente nelle azioni già intraprese e legate agli sviluppi in corso del piano. Infatti, il PGRA contribuisce al miglioramento ed all'arricchimento della resilienza

del territorio e della capacità di adattamento ai cambiamenti climatici, sia con le attività di conoscenza organica del territorio, sia con le misure strutturali e non strutturali per la mitigazione del rischio attualmente promosse. Nello studio allegato alla Strategia Regionale di Adattamento, l'approccio scelto è stato quello di analizzare gli impatti del cambiamento climatico sul dissesto idrogeologico in termini di anomalie di precipitazione giornaliera. In particolare la valutazione delle anomalie per un insieme di indicatori proxy caratteristici, significativi e convenzionalmente utilizzati (ETCCDI), mostra le tendenze alle variazioni climatiche per differenza tra gli scenari climatici attuali e futuri calcolati all'interno di un modello climatico.

Gli scenari di pericolosità meteo-indotta per il rischio di allagamento in ambito urbano con possibile perdita di vite umane sono stati calcolati con due possibili combinazioni. Nella prima è stato usato un indicatore a percentile, come stima della magnitudo degli eventi di precipitazione giornaliera intensa, in cui il proxy è rappresentato dalle anomalie del novantanovesimo percentile della distribuzione della precipitazione giornaliera, indicato con il termine 99p. Nella seconda combinazione è stato usato un indicatore a quantile, che deriva da un'analisi statistica dei massimi di precipitazione giornaliera e permette una stima della magnitudo e della frequenza degli eventi estremi di precipitazione. Nello specifico, il proxy è rappresentato dai valori delle anomalie della massima precipitazione giornaliera che mediamente si verifica con un tempo di ritorno di 50 anni, o, in sintesi, il valore del quantile di precipitazione giornaliera con tempo di ritorno di 50 anni.

I risultati delle analisi mostrano livelli di pericolosità da eventi estremi di precipitazione giornaliera particolarmente alti nelle seguenti zone: Ogliastra, Sarrabus-Gerrei, Capoterra e Cagliaritano. Fa eccezione il territorio del Nuorese, dove non sono evidenti scenari di comportamento critico.

Il modello di rappresentazione descritto è prevalente in entrambi gli scenari RCP per la combinazione con il percentile 99p, mentre si riduce nello scenario RCP4.5 e si diversifica nello scenario RCP8.5 per il quantile con tempo di ritorno di 50 anni.

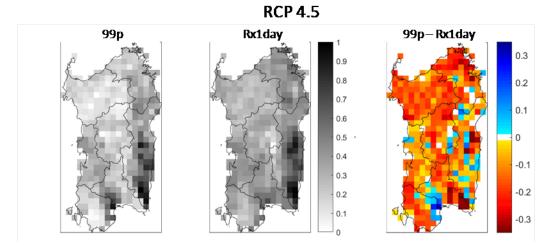



Figura 6 - Anomalie normalizzate per gli indicatori 99p (99° percentile della precipitazione) ed Rx1day (Massimo di precipitazione giornaliera = Massimo valore di precipitazione giornaliera) e differenza dei valori di anomalia (99p - Rx1day) all'interno dello stesso scenario di emissione RCP4.5

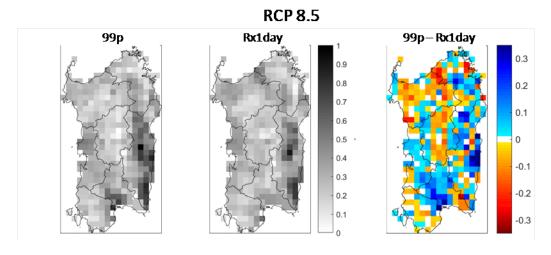



Figura 7 - Anomalie normalizzate per gli indicatori 99p (99° percentile della precipitazione) ed Rx1day (Massimo di precipitazione giornaliera = Massimo valore di precipitazione giornaliera) e differenza dei valori di anomalia (99p - Rx1day) all'interno dello stesso scenario di emissione RCP8.5

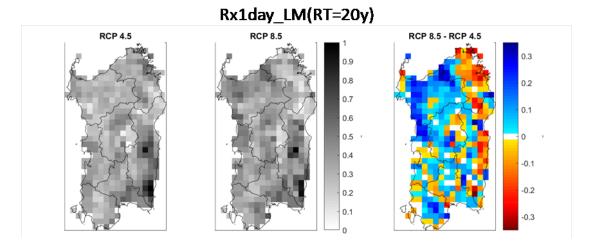



Figura 8 - Anomalie normalizzate dell'indicatore Rx1day\_LM(Quantile o valore di ritorno della distribuzione GEV dei massimi annui locali di precipitazione giornaliera Rx1day con tempo di ritorno di 20 anni, calcolati con un'analisi statistica degli eventi estremi usando lo stimatore L-moments per la stima dei parametri) per gli scenari di emissione RCP4.5, RCP8.5 e per le differenze tra i due scenari (RCP8.5 – RCP4.5).

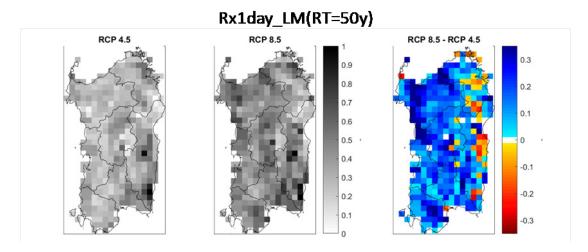



Figura 9 - Anomalie normalizzate dell'indicatore Rx1day\_LM(Quantile o valore di ritorno della distribuzione GEV dei massimi annui locali di precipitazione giornaliera Rx1day con tempo di ritorno di 50 anni, calcolati con un'analisi statistica degli eventi estremi usando lo stimatore L-moments per la stima dei parametri) per gli scenari di emissione RCP4.5, RCP8.5 e per le differenze tra i due scenari (RCP8.5 - RCP4.5).

Il confronto diretto con le mappe di pericolosità d'alluvione presenti nel Piano di Gestione Rischio Alluvioni regionale (PGRA) non è immediato, a causa di diversi limiti dettati dalla disponibilità di dati, obiettivi, tempistiche e mancanza di strumenti di valutazione comuni. Le elaborazioni del PGRA sono state effettuate infatti con strumenti modellistici differenti (trasformazioni afflussi/deflussi, idraulica delle correnti a pelo libero, etc.), di cui gli afflussi meteorici costituiscono solo una delle variabili in ingresso nel complessivo ciclo di calcolo. Inoltre, le analisi non riguardano ancora l'intero reticolo idrografico regionale e hanno scale più fini di dettaglio ed elaborazione. Tuttavia, gli scenari di pericolosità presentati e proposti

potranno essere utilizzati come variabili di input per le condizioni iniziali di strumenti modellistici più completi, utilizzabili con una base dati adeguata.

Una corretta caratterizzazione della pericolosità per il settore del dissesto idrogeologico del territorio non può prescindere da analisi modellistiche legate a metodologie più complete, ma non adottabili allo stato attuale perché più complesse e, quindi, operativamente più dispendiose negli aspetti computazionali e quantitativi, oltre alla necessità di dati e database non disponibili in questo momento.

L'indicatore di esposizione valuta la distribuzione degli elementi esposti sul territorio regionale. Tali elementi sono stati identificati prioritariamente come popolazione residente e zone urbanizzate. L'indicatore mostra una situazione di elevata criticità per i comuni di Cagliari e Sassari, che sono i più popolosi e hanno la maggiore estensione di superficie urbanizzata; di criticità intermedia per il comune di Olbia, per via della notevole estensione delle aree urbanizzate rispetto alla superficie comunale; e di criticità bassa per gli altri comuni della Sardegna, generalmente poco abitati e caratterizzati da un piccolo nucleo insediativo e ampie aree agricole o naturali.

L'indicatore di sensibilità è stato determinato dalla somma pesata di quattro diversi sotto-indicatori, alcuni dei quali si sono mostrati non particolarmente significativi per riuscire a discernere l'effettiva sensibilità di un territorio, rispetto ai fenomeni di allagamento presi in considerazione: tra questi, in particolare, l'indicatore relativo alle strutture strategiche, comunque presenti, seppure in numero più o meno elevato, nei diversi comuni della Sardegna. L'indicatore relativo alla popolazione sensibile, seppur significativo in termini assoluti, perde di significatività se valutato alla scala regionale. Esso, infatti, risulta particolarmente rilevante alla scala di dettaglio, quale quella ad esempio dei Piani di Protezione Civile Comunali, perché descrive il numero di soggetti sensibili, che risiedono negli edifici ricadenti in aree a pericolosità idraulica e, quindi, potenzialmente coinvolti, in maniera diretta, dall'evento. Invece, risultano particolarmente significativi gli indicatori relativi alla percentuale di zone urbanizzate ricadenti nelle aree a pericolosità idraulica e la percentuale di canali tombati presenti nei diversi comuni, considerando, comunque, che, ad oggi, ancora alcune zone del territorio regionale non sono state oggetto di appositi studi di approfondimento dell'assetto idrogeologico. In tali casi, la consistenza delle aree a pericolosità idraulica può risultare sottostimata. Per ciò che concerne i canali tombati, in adempimento ad una specifica Direttiva emanata dal Comitato Istituzionale dell'Autorità di Bacino della Sardegna, sono attualmente in elaborazione, a cura dei Comuni, le apposite verifiche di sicurezza idraulica, i cui dati forniranno ulteriori elementi di criticità idraulica che potrebbero determinare, in caso di eventi meteorici estremi, un effettivo aumento della sensibilità del territorio in termini di pericolosità e rischio.

L'analisi dell' indicatore di sensibilità segnala condizioni di maggiori criticità nei comuni di Olbia, Santa Maria Coghinas ed Assemini. Per Olbia e Assemini, il dato conferma la particolare sensibilità mostrata in passato, in occasione di esondazioni e allagamenti che produssero ingenti danni e perdite di vite umane (per i noti eventi pluviometrici estremi del 1999 e nel 2008 ad Assemini e del 2013 ad Olbia). Diversi altri comuni della Sardegna

mostrano condizioni di elevata criticità, in particolare quelli che sono stati tutti interessati in passato da conseguenze catastrofiche, o molto rilevanti, in occasione di afflussi meteorici estremi (quali ad esempio Villagrande Strisaili, Terralba, Arzachena, Bosa e Orosei), mentre non risulta così evidente per gli altri comuni, che non hanno invece mostrato in passato particolare sensibilità a tali eventi.

L'indicatore di capacità di adattamento evidenzia condizioni di elevata criticità in numerosi comuni della Sardegna, molti dei quali localizzati nella Sardegna centrale, nel Sarrabus-Gerrei, nell'Oristanese e nel Sulcis-Iglesiente. Mostra, invece, condizioni non critiche la maggioranza dei comuni che si sono dotati, nell'ultimo decennio, di uno strumento urbanistico (PUC) adeguato al PAI, condizione di particolare rilevanza per la capacità di adattamento al tipo di rischio considerato, poiché comporta la conoscenza da parte di tecnici e amministratori delle aree a pericolosità idraulica presenti nel proprio territorio comunale. Tale conoscenza risulta, infatti, di fondamentale importanza per affrontare e gestire eventi di allagamento ed esondazione e sviluppare strategie di adattamento efficaci, e lo sarebbe ancora di più se integrata con studi che permettono di simulare le aree pericolose relative agli scenari climatici futuri.

# Individuazione dei bacini predisposti a fenomeni di flash flood mediante indicatori

Verifica dell'applicabilità del metodo "Arno" al contesto regionale della Sardegna

#### 1.1. Premessa

Il presente documento affronta la tematica degli eventi intensi e concentrati (flash flood) e si inquadra nell'ambito della individuazione delle aree a potenziale rischio significativo richiesti dalla Direttiva Alluvioni 2007/60/CE, assunta l'ipotesi di fondo che l'intensificazione di tali eventi sia l'effetto dei cambiamenti climatici in atto.

Nella relazione è dapprima presentato un quadro delle metodologie di valutazione correntemente adottate in Sardegna per la valutazione delle piene dei corsi d'acqua, verificando -ove possibile- aspetti di conformità con gli studi disponibili e il grado di conoscenza acquisito dalla letteratura scientifica nei piccoli bacini riguardo a tali fenomeni.

Una metodologia speditiva per la previsione di eventi tipo flash flood è stata sviluppata e applicata dal Distretto dell'Appennino Settentrionale, i cui esiti sono riportati nelle mappe del Piano di Gestione del Rischio Alluvioni di quel distretto (cosiddetto "Metodo Arno"). Tale metodologia, proposta a livello nazionale, è considerata indicativa della predisposizione alle piene improvvise in quei bacini idrografici che, per le loro caratteristiche fisiografiche e pluviometriche, presentano particolari caratteristiche idrologiche e morfometriche. Successivamente sarà impostato un approccio critico alla procedura proposta, con valutazioni riguardanti l'applicabilità al contesto regionale della Sardegna.

#### 1.2. Valutazione delle piene in Sardegna

Come è noto, in Sardegna i metodi relativi alla stima delle piene dei bacini idrografici possono essere sinteticamente ricondotti ai metodi indiretti basati sulle curve di possibilità pluviometrica (Cao, Pazzaglia, & Puddu, 1969), (Deidda & Sechi, 2000), ai metodi probabilistici diretti basati sui deflussi osservati (Cao, Sechi, & Becciu, 1988) e al metodo del massimo contributo unitario o metodo empirico (Fassò, 1969).

A causa della ridotta base dati riguardante gli eventi di piena, un approccio correntemente utilizzato per la valutazione dell'idrogramma alla sezione di controllo del bacino prevede l'utilizzo di modelli di trasformazione afflussi-deflussi i quali richiedono la conoscenza dell'informazione pluviometrica e dei numerosi parametri caratterizzanti il bacino: tali parametri influiscono sulle valutazioni riguardanti sia il problema della stima delle perdite durante l'evento che il trasferimento del deflusso lungo la rete idrografica. Approcci alternativi per la generazione di idrogrammi sintetici su un bacino assegnato, sono stati concepiti in ambito pianificatorio (Cao, Salis, Sechi, & Silvano, 1980), (Salis & Sechi, 1980) per la valutazione degli effetti dei serbatoi nella gestione delle piene, i quali utilizzano la sola base dati idrometrica ponendo ipotesi semplificative sulla forma dell'idrogramma il quale è caratterizzato dal valore massimo della portata e dal tempo della fase antecedente e seguente l'istante di colmo. Tali studi hanno riguardato soprattutto l'analisi della durata delle fasi di concentrazione ed esaurimento e sono basati sulla quantificazione delle caratteristiche dei bacini tributari dei corsi d'acqua esaminati, consentendo di associare ai deflussi mensili in una generica sezione di interesse la corrispondente serie mensile di idrogrammi sintetici di piena.

#### 1.3. Piene dei piccoli bacini e Flash flood

Con il termine "Flash Flood" è invalso l'uso di indicare il fenomeno di piena di un corso d'acqua generato da un evento pluviometrico intenso e localizzato ma che provoca un sopralzo dei livelli in modo repentino tale da raggiungere il picco della portata in qualche minuto o in poche ore, caratterizzandosi come una piena improvvisa. Tale tipologia di fenomeni idrometeorologici causa spesso impatti nella rete idrografica in quanto a rapida evoluzione, cogliendo impreparata la popolazione soprattutto nelle intersezioni della viabilità con la rete idrografica. Per tali motivi tali eventi diventano occasionalmente disastrosi qualora si concentrino in prossimità delle aree urbane.

La forzante pluviometrica è il fattore cui si attribuisce un peso determinante nella generazione del deflusso: tali fenomeni sono solitamente caratterizzati da eventi con intensità elevate, durate fino a circa 1 ora (Elkhrachy, 2015) e sono molto difficili da prevedere con sufficiente anticipo. Le attività di nowcasting (radar, immagini satellitari, osservazioni in real time) consentono comunque di osservare l'evoluzione spazio-temporale della pioggia nel contesto territoriale dei sottobacini idrografici studiati.

Con riferimento a eventi di durata pari o inferiore all'ora, appare naturale associare questi ai "piccoli bacini", individuati generalmente con un'area inferiore a 100 km² (Bracken & Croke, 2007); (McGuire & McDonnell, 2010); (Merheb, et al., 2016) e caratterizzati da tempi di concentrazione assai brevi e simili alle durate tipiche di tali eventi pluviometrici.

Oltre alla pioggia, nei processi idrologici che determinano la produzione di deflusso nelle flash flood rivestono un ruolo di particolare importanza le proprietà pedologiche del bacino, aspetto che appare di rilievo soprattutto in bacini, come quelli della Sardegna e del Mediterraneo, i quali sono spesso dotati di uno scarso spessore di suolo (Rinat, Marra, Zoccatelli, & Morin, 2018) e con un ridotto fattore di attenuazione dei fenomeni idrometrici.

In generale si è quindi concordi nell'assumere, quali fattori che condizionano lo sviluppo di tali eventi, la natura del bacino e la fenomenologia dell'evento di pioggia inducente, benché la scarsa numerosità dei dati disponibili non abbia ancora consentito di comprendere a fondo l'interazione tra le caratteristiche dell'evento pluviometrico e la conseguente risposta del bacino. A tale proposito è considerata strategica l'attività di studio della topografia (DTM), delle informazioni geopedologiche, della copertura dei suoli e dell'uso, al fine di spiegare e prevedere la risposta in termini di deflusso del corso d'acqua con l'intento di valutare gli eventuali effetti sulla popolazione e sulle infrastrutture.

#### 1.4. Metodologia degli indicatori proposta

Negli ultimi decenni gli studi per la difesa dei territori dagli eventi di piena e la disponibilità di una base informativa territoriale progressivamente assai ampia, omogenea e strutturata, hanno spinto ad affrontare il problema dei cambiamenti climatici e della predisposizione al danno da piena con strumenti informativi territoriali e modellistici avanzati, elaborando metodologie condivise sia a livello nazionale che europeo. Il metodo "Arno" sui fenomeni tipo Flash Flood proposto dal (Distretto Idrografico dell'Appennino Settentrionale, 2010) si basa sulla individuazione e valutazione di tre parametri assunti quali indicatori della

predisposizione dei bacini idrografici ricadenti di un contesto ampio assai ampio, quali i grandi bacini idrografici dei fiumi principali.

Il metodo individua i tre parametri nei seguenti:

- l'area del sottobacino (inferiore a 500 kmq),
- il tempo di risposta (o time-lag  $T_{LAG}$ ); il  $T_{LAG}$  valutato nella sezione di chiusura di ciascun sottobacino, rappresenta il tempo di ritardo dell'onda di piena rispetto al baricentro della precipitazione e può essere stimato in funzione del tempo di corrivazione;
- la valutazione della distribuzione spaziale dei tempi di ritorno della pioggia critica (precipitazione minima in grado di innescare fenomeni di piena improvvisa) partendo dalle linee segnalatrici di possibilità pluviometrica associate ai pluviometri afferenti all'area oggetto di valutazione.

La metodologia proposta utilizza pertanto come parametri l'area del bacino ( $A_B$  in km<sup>2</sup>), il tempo di ritardo ( $T_{LAG}$  in ore) e il tempo di ritorno ( $T_R$  in anni) dell'evento di progetto.

Il tempo di ritorno T<sub>P</sub> associato alla pioggia di progetto è individuato sulla base della cumulata oraria di 50 mm la quale è indicata come "soglia pluviometrica tipica di eventi intensi e concentrati" e considerata come "altezza di precipitazione critica" dell'evento critico(<sup>2</sup>).

Il valore di ciascuno di tali parametri è classificato in 4 categorie (dette "classi di propensione"), stabilendo che l'ampiezza di ciascuna classe avvenga sulla base dei quartili della distribuzione di frequenza dei parametri stessi (25°, 50°, 75° percentile) e associando a ciascuna classe il valore attribuito secondo la *Tabella 1*.

In tal modo, indicando con k l'indice del parametro (rispettivamente k=1 come  $A_B$ , k=2 come  $T_{LAG}$ , k=3 come  $T_R$ ), si definisce indice di propensione IFF<sub>i,k</sub> del bacino i-esimo rispetto al parametro k il valore numerico intero compreso tra 1 e 4 attribuito al bacino che ricade in una delle classi così definite.

Tabella 1 - Attribuzione del valore all'indice IFF<sub>i,k</sub>

| Classe        | 1     | 2           | 3           | 4     |
|---------------|-------|-------------|-------------|-------|
| Percentile    | ≤ 25° | ] 25°, 50°] | ] 50°, 75°] | > 75° |
| Valore indice | 4     | 3           | 2           | 1     |

La sommatoria degli indici per ciascun bacino ne determina il valore finale  $IFF_i$  di propensione dell'i-esimo bacino ai fenomeni di Flash Flood. Anche in questo caso, la classificazione secondo il criterio dell'appartenenza alla classe con significato di propensione molto elevata, elevata, moderata e bassa rispettivamente per la prima, seconda, terza e quarta classe.

<sup>&</sup>lt;sup>2</sup> Si osserva che, coerentemente con quanto riportato anche nei manuali, l'evento pluviometrico critico è l'evento la cui precipitazione è caratterizzata da una durata ("durata critica") tale affinché defluisca nella sezione idrografica di riferimento la massima portata dal bacino scolante, senza alcuna accezione di criticità idraulica.

## 1.5. Applicazione ai bacini della Sardegna

#### 1.5.1. Considerazioni preliminari

Con riferimento alle modalità di approccio del metodo proposto si osserva come l'applicazione a bacini di ampiezza fino a 500 km² appaia un criterio assai ampio che impone una scala di studio rivolta verso i grandi bacini rispetto a quelli di estensione di qualche km² che sono quelli di specifico interesse per l'analisi, anche con riferimento alla tipicità dei bacini isolani, osservando che tale area corrisponde a circa il 90% dell'intera superficie regionale come mostrato nella *Figura 10* e nella *Figura 11*.

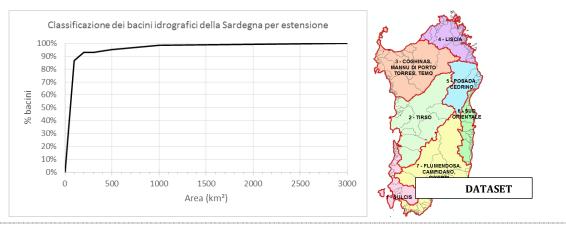



Figura 10 - Classificazione dell'estensione dei bacini idrografici della Sardegna secondo il dataset CEDOC



Figura 11 - Classificazione dell'estensione dei bacini idrografici della Sardegna secondo il dataset CRS4 (alcune aree costiere in grigio non sono state considerate)

Per la delimitazione dei bacini idrografici e, dunque, per la definizione delle sezioni di interesse, attualmente non è disponibile un unico archivio di perimetrazioni idrografiche cui è possibile fare riferimento, in quanto l'individuazione delle sezioni di interesse è legata alla finalità specifica degli studi idrologici eseguiti a livello regionale in vista di varie esigenze progettuali o di pianificazione oppure legate all'esistenza di sezioni idrografiche osservate.

Attualmente possono essere individuabili differenti dataset realizzati in relazione agli studi di cui si è detto e in particolare:

- SISS: Studio dell'idrologia superficiale della Sardegna (1998), Rappresenta una base dati storica (in formato CAD), relativa alle sezioni di interesse per lo studio di valutazione dei deflussi. Lo Studio ha considerato circa 50 sezioni di controllo per altrettanti bacini idrografici ma non sono disponibili allegati cartografici informatizzati e a scala adeguata.
- CEDOC: la suddivisione del Centro di Documentazione dei Bacini Idrografici restituisce 317 bacini di estensione compresa tra 0.3 e 2037 km² per una estensione complessiva di 24056 km (in pratica pari all'intera estensione del territorio regionale);
- CRS4: individua 111 bacini principali ed effettua una ripartizione di circa 89% dell'estensione dell'Isola non tenendo conto dei bacini costieri.

Altri studi (PAI, GNDCI, PSFF, Annali etc) contengono delimitazioni idrografiche funzionali all'espletamento delle relative indagini idrologiche.

Gli studi effettuati dal GNDCI contengono valutazioni probabilistiche delle piene nell'Isola considerando circa 200 sezioni idrografiche; ma i dati sulle caratteristiche morfometriche dei

bacini sottesi appaiono inadeguati per essere integrate agevolmente in un dataset basato su GIS e pertanto non rappresentano un insieme strutturato e gestibile con gli usuali strumenti informatici.

Il PSFF adotta come sezioni di controllo le confluenze dei maggiori affluenti della rete idrografica che contribuiscono ad incremento sostanziale dell'area del bacino sotteso ma non si ha a disposizione il relativo archivio informatico.

Infine, ulteriore documentazione sui bacini idrografici sottesi alle sezioni di misura è presente negli Annali Idrologici della Sardegna ma la scarsità di sezioni di misura disponibili, limita di fatto le informazioni ufficiali a relativamente pochi bacini.

Tra i dataset precedenti, benché quello CEDOC appaia essere quello più rappresentativo, esso manifesta evidenti problemi di incoerenza sia con la rappresentazione del terreno del DTM regionale che con l'articolazione del reticolo idrografico deliberata da ADIS nel 2015. Inoltre esso necessita di essere rielaborato anche alla luce dei nuovi dati disponibili alle varie scale di rappresentazione della rete idrografica naturale e di bonifica delle zone di pianura o costiere. Un ulteriore aspetto da considerare riguarda l'assenza di una codifica univoca dei bacini sviluppata in modo coerente sia con la denominazione delle zone idrografiche (indicate nella Delib. G.R. n.45/57 del 30.10.1990) che con la caratterizzazione delle varie sottozone effettuata nel citato PSFF.

In generale si pone quindi il problema di stabilire non solo perimetrazioni attendibili dei bacini principali dell'Isola ma anche una caratterizzazione esaustiva dei sottobacini sottesi alle sezioni di confluenza del reticolo idrografico ufficiale fin ai tronchi idrici del primo ordine (Horton).

Come sopra documentato, il metodo "Arno" prevede l'utilizzo del parametro di ritardo T<sub>LAG</sub> come indicatore della rapidità dell'evoluzione della fase di concentrazione nella formazione della piena, valutato come aliquota fissa del tempo di corrivazione per ciascun bacino di riferimento. Al fine dell'individuazione dell'evento critico per il bacino in esame, sarà certamente necessario per ciascuna sezione idrografica valutare il tempo di risposta in termini di massimo deflusso e quindi assumere che la durata della pioggia sia almeno pari al tempo di colmo dell'idrogramma generato. Ipotizzando una durata dell'evento meteorico almeno pari al tempo di corrivazione del bacino e considerando uno ietogramma di forma rettangolare, questa condizione corrisponde al considerare il T<sub>LAG</sub> almeno uguale alla metà del tempo di corrivazione. Pertanto, assumendo la convenzione di considerare il tempo di ritardo come il 60% del valore del tempo di corrivazione del bacino, si assumerebbe una condizione sufficientemente cautelativa.

Riguardo all'evento critico, la scelta di utilizzare come evento di riferimento quello con durata oraria e cumulata di 50 mm, è riguardarsi come la caratterizzazione della forzante pluviometrica della zona studiata considerata slegata dalla risposta del bacino in termini di deflusso.

Si osserva che è da valutare la presenza degli invasi determinati dalle grandi dighe che di fatto sono in grado di laminare piene anche consistenti limitando o annullando la propagazione dei fenomeni di piena a valle dello sbarramento (aspetto non trattato dalla metodologia).

#### 1.5.2. Dataset disponibili

Come sopra documentato, l'applicazione della metodologia "Arno" per i bacini della Sardegna attiene alla disponibilità dei dati seguenti:

- modello digitale di elevazione (DTM) del bacino, con maglia di dimensione adeguata all'ampiezza del bacino studiato;
- reticolo idrografico di riferimento e bacini idrografici sottesi alle sezioni di interesse;
- statistiche pluviometriche delle piogge brevi ed intense.

Con riferimento al primo dato, la regione Sardegna risulta integralmente coperta dal modello digitale di elevazione a maglia di 10 m derivato dai punti della Carta Tecnica Regionale (RAS, 1998) realizzata da voli aerei aerofotogrammetrici e restituzione effettuati tra il 1994 e il 2000. Tale dataset, pur risentendo di una assenza di dettaglio adeguato e di una certa obsolescenza, rappresenta ancora il riferimento attuale per le indagini morfometriche a scala di bacino. Altri dataset, più recenti e con dettaglio fino a 1 m sono tuttavia disponibili solo per le aree di fondovalle e di pianura, già utilizzati per le elaborazioni modellistiche nell'ambito degli studi di allagamento.

Riguardo al reticolo idrografico di riferimento, la Regione Sardegna ha indicato all'art. 14 delle Norme di Attuazione del PAI e con riferimento alla deliberazione del Comitato Istituzionale n. 3 del 30.07.2015 dell'Autorità di Bacino, quale reticolo idrografico di riferimento per l'intero territorio regionale, l'insieme degli elementi idrici contenuti nell'ultimo aggiornamento dello strato informativo del Data Base Geotopografico a scala 1:10.000 della Regione, da integrare con gli ulteriori elementi idrici eventualmente rappresentati nella cartografia IGM serie 25V edita dal 1958 al 1965. Per i fini dell'applicazione del metodo sarà comunque utilizzabile la versione pubblicata nel Data Base Geotopografico (04\_ELEMENTO\_IDRICO.shp del DBGT\_10k\_Versione 0.1).

Con riferimento alle statistiche pluviometriche delle precipitazioni brevi ed intense, per la valutazione del tempo di ritorno da associare alla pioggia di durata oraria per ciascun bacino di riferimento, saranno utilizzate le forme regionalizzate delle curve di possibilità pluviometrica del territorio della Sardegna di cui si è già detto, valutando i relativi parametri indicati dal metodo validi per ciascun bacino in esame.

#### 1.5.3. Valutazione degli indici

Per le finalità della presente relazione si ritiene opportuno considerare come sezioni di interesse quelle di confluenza di ciascun elemento idrografico rappresentato, il quale è da riguardarsi come elemento informativo di base per le successive valutazioni, procedendo per successive aggregazioni in sottobacini totali in relazione alle esigenze di analisi.

Una volta stabilite le sezioni di interesse e considerato che la metodologia proposta si indirizza per l'applicazione a bacini di ampiezza inferiore a 500 kmq, si procederà con le procedure di geoprocessing per l'individuazione dei parametri morfometrici.

La quantificazione dei parametri relativi alle caratteristiche morfometriche dei bacini sottesi da ciascuna sezione di controllo, considerata alla confluenza di ogni elemento idrografico, è funzionale alle valutazione dei tempi di corrivazione espressi dalle numerose formule empiriche presenti nella letteratura tecnica, limitando queste alle sole espressioni usualmente applicate ai bacini dell'isola e appresso riportate (GNDCI-CNR, 1991):

1) 
$$t_c = 0.1272 \sqrt{\frac{A}{i_M}}$$

2) 
$$t_c = 0.1272 \sqrt{\frac{A}{i_B}}$$

3) 
$$t_c = 0.108\sqrt[3]{A \cdot L} \sqrt[-2]{i_M}$$

4) 
$$t_c = \frac{L}{3.6} V_m$$

5) 
$$t_c = 0.212 \cdot A^{0.231} \cdot h_M^{0.289} \cdot i_M^{-0.289}$$

quali rispettivamente: prima e seconda formula di Ventura, f. di Pasini, f. di Viparelli e f. VAPI con il consueto significato dei simboli:

t<sub>c</sub>: tempo di corrivazione (ore)

A: area del bacino (km²)

L: lunghezza dell'asta fluviale principale (km)

h<sub>M</sub>: quota media del bacino (m)

i<sub>M</sub>: pendenza media dell'asta fluviale principale

i<sub>B</sub>: pendenza media del bacino

V<sub>M</sub>: velocità media (m/s)

Dal confronto critico dei risultati ottenuti sarà adottato il tempo ritenuto idoneo (in tal caso quello minore) e la conseguente valutazione del tempo ritardo sarà effettuata come aliquota del tempo di corrivazione considerato equivalente alla durata critica per il bacino sotteso  $(T_{LAG} = 0.6 t_C)$ .

#### 1.5.4. Tempo di ritorno dell'evento critico

La metodologia proposta individua quale l'evento critico una precipitazione lorda di durata  $\tau$  oraria e cumulata  $P(\tau)$  pari a 50 mm. L'attribuzione del tempo ritorno all'evento di assegnate caratteristiche sarà effettuato sulla base delle curve di possibilità pluviometrica nella formulazione monomia canonica espressa nella forma

$$P_T(\tau)=a\cdot \tau^n$$

ove il tempo di ritorno  $T_R$  compare attraverso i parametri a ed n. Considerando ad esempio l'espressione dei parametri della curve di possibilità pluviometriche basate sulla distribuzione statistica TCEV

$$P_T(\tau) = \mu(\tau) K_T$$

la determinazione di  $T_R$  potrà essere eseguita invertendo le relazioni che esprimono la dipendenza dei parametri a ed n rispetto al tempo di ritorno. Infatti l'espressione della

pioggia indice  $\mu(t) = a_1 \cdot \tau^{n_1}$  dipende dalla durata assegnata della precipitazione e dai coefficienti  $a_1$  ed  $n_1$  calcolabili in funzione della pioggia giornaliera media  $\mu_G$ :

$$a_1 = \mu_G (0.886 \cdot 24^{n_1})^{-1}$$
  
$$n_1 = -0.493 + 0.476 \log \mu_G$$

Nella relazione che esprime il coefficiente di crescita:

$$K_T = a_2 \cdot \tau^{n_2}$$

ove  $K_T$  dipende dalla durata  $\tau$  e dal tempo di ritorno  $T_R$  mediante i parametri  $a_2$  ed  $n_2$  relativi alla sottozona di appartenenza (*Tabella 2* e *Tabella 3*). Pertanto, per quanto riguarda le piogge di durata oraria o inferiore all'ora, il problema si traduce nella risoluzione della forma quadratica.

Tabella 2 - Coefficienti a2 ed n2 per tempi di ritorno T ≤ 10 ANNI

| Sottozona | a <sub>2</sub>          | n <sub>2</sub>                                           |
|-----------|-------------------------|----------------------------------------------------------|
| SZO 1     | 0.66129 + 0.85935 Log T | -1.8438·10 <sup>-4</sup> − 1.5339·10 <sup>-2</sup> Log T |
| SZO 2     | 0.64597 + 0.89777 Log T | -5.6073·10 <sup>-3</sup> + 7.0047·10 <sup>-4</sup> Log T |
| SZO 3     | 0.62235 + 0.95656 Log T | -2.4882·10 <sup>-2</sup> + 4.5884·10 <sup>-2</sup> Log T |

Tabella 3 - Coefficienti a2 ed n2 per tempi di ritorno T > 10 ANNI

| Sottozona | <b>a</b> <sub>2</sub>  | durata        | n <sub>2</sub>                                                           |  |  |  |  |  |
|-----------|------------------------|---------------|--------------------------------------------------------------------------|--|--|--|--|--|
| SZO 1     | 0.46420 + 1.0376 Log T | per τ ≤ 1 ora | -0.18448 + 0.22960 Log T - 3.3216 $10^{-2}$ (Log T) <sup>2</sup>         |  |  |  |  |  |
| 320 1     | 0.46420 + 1.0576 Log 1 | per τ > 1 ora | -1.0469 $10^{-2}$ – 7.8505 $10^{-3}$ Log T                               |  |  |  |  |  |
| SZO 2     | 0.43797 + 1.0890 Log T | per τ ≤ 1 ora | -0.18722 + 0.24862 Log T - 3.6305 10 <sup>-2</sup> (Log T) <sup>2</sup>  |  |  |  |  |  |
| 320 2     | 0.43/9/ + 1.0090 Log I | per τ > 1 ora | -6.3887 10 <sup>-3</sup> – 4.5420 10 <sup>-3</sup> Log T                 |  |  |  |  |  |
| 670.2     | 0.40026 . 1.1441 I Т   | per τ ≤ 1 ora | -0.19060 + 0.264438 Log T - 3.8969 10 <sup>-2</sup> (Log T) <sup>2</sup> |  |  |  |  |  |
| SZO 3     | 0.40926 + 1.1441 Log T | per τ > 1 ora | $1.4929\ 10^{-2}$ + $7.1973\ 10^{-3}\ Log\ T$                            |  |  |  |  |  |

Nel caso della curva di possibilità pluviometrica ottenuta con l'ausilio della distribuzione statistica GEV (approccio geostatistico), la componente di pioggia indice (espressa in mm) è data dalle espressioni seguenti:

$$\mu$$
 (t)=  $a_{1m}$ ·  $t^{n1m}$  con  $t \le 1$  ora  
 $\mu$  (t)=  $a_{2m}$ ·  $t^{n2m}$  con  $t > 1$  ora

i cui parametri sono valutati mediante la pioggia giornaliera  $\mu_G$  (in mm) riportata spazialmente nella cartografia allegata alla documentazione sul metodo:

$$n_{1m} = -0.20 + 0.33 \log \mu_G$$

$$n_{2m} = -0.60 + 0.52 \log \mu_G$$

$$a_{1m} = a_{2m} = \frac{-10 + 1.25\mu_G}{24^{n_{2m}}}$$

La componente di crescita è invece espressa dalla variabile ridotta  $y_T(t)$  (adimensionale) che dipende dal tempo di ritorno attraverso i parametri  $a_{1y}$ ,  $a_{2y}$ ,  $n_{1y}$ ,  $n_{2y}$ :

$$y_T(t) = a_{1y} \cdot t^{n1y} \text{ con } t \le 1 \text{ ora}$$
  
 $y_T(\tau) = a_{2y} \cdot t^{n2y} \text{ con } t \ge 1 \text{ ora}$ 

le cui espressioni (*Tabella 4*) sono rappresentate da forme polinomiali logaritmiche facilmente trattabili nelle quali compaiono il fattore di forma  $k_D$  e il fattore di scala  $\sigma *_D$  (adimensionali) anch'essi spazialmente distribuiti.

Nella pratica si procederà attribuendo a ciascun elemento di un reticolato a maglia 1 km sia il valore medio della pioggia indice  $\mu(t)$  del bacino che i parametri medi di crescita e di forma, sulla base dei quali determinare il valore del tempo di ritorno associabile, da rappresentare territorialmente secondo la delimitazione dei bacini idrografici.

Tabella 4 - Coefficienti a1y, a2y, n1y, n2y nella componente della curva di crescita

```
\begin{split} n_{1y} &= n_{1y_p} + n_{1y_q} \log_{10} T \\ n_{2y} &= n_{2y_p} + n_{2y_q} \log_{10} T \\ a_{1y} &= a_{2y} = 10^{a_{1y_p}} + a_{1y_q} \log_{10} T \\ a_{1y} &= a_{2y} = 10^{a_{1y_p}} + a_{1y_q} \log_{10} T + a_{1y_r} \left(\log_{10} T\right)^2 \\ n_{1y_p} &= -0.08441 - 0.09092 \, \kappa_D + 0.07846 \, \sigma_D^* + 0.32383 \, \kappa_D^2 + 0.00793 \, \kappa_D \, \sigma_D^* + 0.01891 \, \sigma_D^2 \\ n_{1y_q} &= +0.02720 + 0.13097 \, \kappa_D + 0.18360 \, \sigma_D^* - 0.37370 \, \kappa_D^2 - 0.07701 \, \kappa_D \, \sigma_D^* - 0.07303 \, \sigma_D^2 \\ n_{2y_p} &= +0.01206 - 0.17695 \, \kappa_D + 0.01612 \, \sigma_D^* - 0.67415 \, \kappa_D^2 - 0.05609 \, \kappa_D \, \sigma_D^* + 0.13555 \, \sigma_D^2 \\ n_{2y_q} &= -0.10358 + 0.17971 \, \kappa_D + 0.29584 \, \sigma_D^* + 0.74819 \, \kappa_D^2 + 0.36062 \, \kappa_D \, \sigma_D^* - 0.34968 \, \sigma_D^2 \\ a_{1y_p} &= -0.06465 - 0.04403 \, \kappa_D - 0.08110 \, \sigma_D^* + 0.08870 \, \kappa_D^2 + 0.06253 \, \kappa_D \, \sigma_D^* + 0.05123 \, \sigma_D^2 \\ a_{1y_q} &= +0.20019 + 0.06131 \, \kappa_D + 0.38674 \, \sigma_D^* - 0.09988 \, \kappa_D^2 - 0.10208 \, \kappa_D \, \sigma_D^* - 0.10724 \, \sigma_D^2 \\ a_{1y_q} &= -0.01193 - 0.00329 \, \kappa_D - 0.05745 \, \sigma_D^* - 0.01044 \, \kappa_D^2 + 0.01938 \, \kappa_D \, \sigma_D^* + 0.01084 \, \sigma_D^2 \end{split}
```

#### 1.6. Risultati dell'applicazione al bacino campione

L'applicazione della procedura descritta ad un bacino campione, individuato nel rio di Quirra con sezione di chiusura alla foce, è stata sviluppata nelle fasi seguenti:

- 1. individuazione del dataset di riferimento sulla base della perimetrazione della zona idrografica sud-orientale (DTM, idrografia, pioggia indice e parametri della distribuzione riferiti alla zona idrografica) (1 livello);
- 2. applicazione delle procedure di geoprocessing per l'individuazione del bacino principale del rio di Quirra (2° livello);
- 3. applicazione delle procedure di geoprocessing per l'individuazione dei sottobacini sottesi alle sezioni di confluenza del reticolo idrografico ricadente nel bacino del rio di Quirra (3° livello).
- 4. determinazione dei parametri morfometrici di ciascun sottobacino totale e dei parametri geometrici dell'asta idrografica principale;
- 5. stima del tempo di corrivazione e calcolo del T<sub>LAG</sub>;
- 6. attribuzione del tempo di ritorno dell'evento  $T_R$  considerato critico per ciascun sottobacino;

La procedura ha consentito di individuare nell'area del bacino del rio di Quirra ( $A_B$ =329 kmq e Perimetro P=140 km), 188 bacini parziali e 93 confluenze le quali hanno individuato altrettanti bacini totali. Sulla base dell'insieme dei valori trovati sono stati individuate le soglie di attribuzione di ciascuna classe secondo i quartili della popolazione campionaria considerata.

Valore dei quartili per la definizione delle classi di valutazione dei bacini per ciascun parametro

| CLASSE              | 1    | 2    | 3    | 4     |
|---------------------|------|------|------|-------|
| $A_{B}$             | 6.4  | 23.0 | 95.5 | 328.9 |
| $T_{\text{LAG}} \\$ | 8.0  | 1.5  | 3.6  | 9.3   |
| $T_R$               | 13.5 | 14.7 | 16.7 | 19.6  |

Per ciascun sottobacino è stata quindi individuata la classe di appartenenza in considerazione del valore del parametro ed è stato attribuito il valore dell'indice IFF<sub>i,k.</sub>

I valori degli indici attribuiti ai bacini sulla base della distribuzione di frequenza cumulata sono consegnati nella *Tabella 6* dove sono anche riportati i valori delle varie grandezze che intervengono nella procedura come esplicitato nei paragrafi precedenti.

Dalle figure seguenti si rileva come i valori di  $T_{LAG}$  variano tra circa 1 e 9 ore mentre i tempi di ritorno sono compresi tra 12 e 20 anni. Successivamente, per consentire una visualizzazione spaziale della distribuzione dei bacini secondo le varie classi di predisposizione, sono state effettuate alcune operazioni di overlaying con il risultato consegnato nella *Figura* 16.

Tabella 5 - Valori minimo e massimo dei parametri

|     | $A_{\mathrm{B}}$ | $T_{LAG}$ | $T_R  h_{50,1}$ |
|-----|------------------|-----------|-----------------|
|     | kmq              | ore       | anni            |
| min | 2.3              | 0.28      | R12             |
| max | 328.9            | 9.32      | R19             |

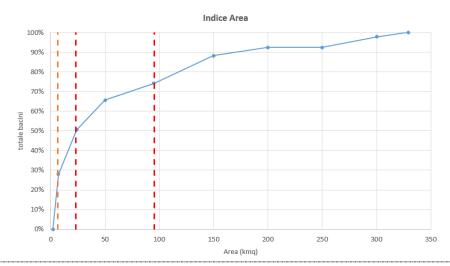



Figura 12 - Curva di distribuzione di frequenza dei valori delle aree



Figura 13 - Curva di distribuzione di frequenza del tempo di ritardo

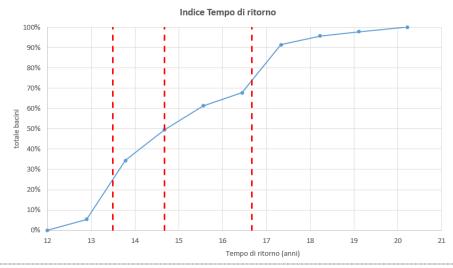



Figura 14 - Curva di distribuzione di frequenza del tempo di ritorno

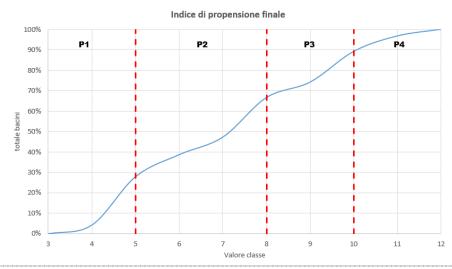



Figura 15 - Curva di distribuzione di frequenza dell'indice finale IFF

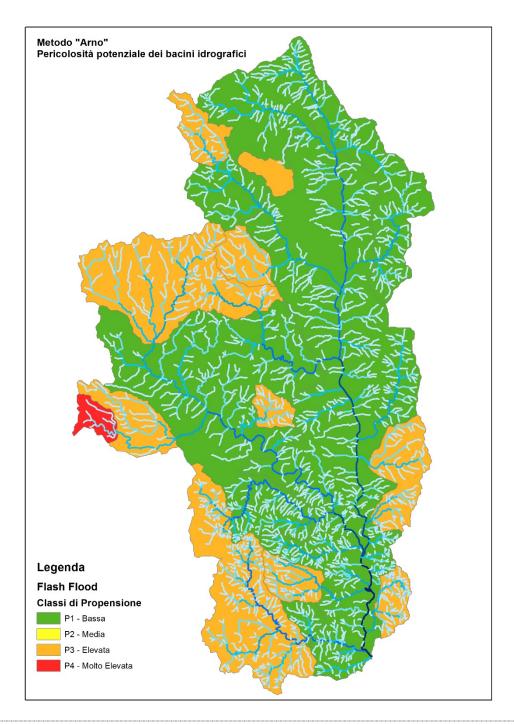



Figura 16 - Classe di propensione a fenomeni flash flood per i sottobacini del rio Quirra

Tabella 6 - Calcolo dell'indice di predisposizione per i 93 sottobacini del rio di Quirra (IFF)

| N        | HydroID<br>ID  | Area<br>Ab | Lungh<br>Lk  | Pendm<br>im        | Tcorr<br>Tc1 | T corri<br>Tc2 | Tc<br>Tc   | Tlag         | Pioggia<br>h | Dur<br>τ | μ<br>μ g  | Par.<br>ssd      | Par.<br>kd       | T.ritorno<br>Tr | iA     | iΤ     | iR     | TOT     |
|----------|----------------|------------|--------------|--------------------|--------------|----------------|------------|--------------|--------------|----------|-----------|------------------|------------------|-----------------|--------|--------|--------|---------|
|          | 45474          | kmq        | km           | - 0.42004          | ore          | ore 0.054      | ore        | ore          | mm           | ore      | mm        | 0.0070           | 0.4504           | anni            |        |        |        | - 10    |
| 1        | 15171          | 2.3        | 2.09         | 0.13064            | 0.5          | 0.651          | 0.5        | 0.32         | 50<br>50     | 1        | 97        | 0.3376           | 0.1581           | 15.3            | 4      | 4      | 2      | 10      |
| 2        | 15197          | 2.7        | 3.46         | 0.09860            | 0.7          | 0.746          | 0.7        | 0.40         | 50<br>50     | 1        | 96        | 0.3367           | 0.2320           | 15.8            | 4      | 4      | 2      | 10      |
| 3        | 15190          | 2.8<br>2.8 | 3.30         | 0.03181<br>0.02630 | 1.2          | 0.788          | 0.8        | 0.47         | 50<br>50     | 1<br>1   | 84        | 0.3306<br>0.3465 | 0.2038<br>0.1338 | 19.6            | 4      | 4<br>4 | 1      | 9<br>11 |
| 4<br>5   | 15163<br>15196 | 2.0<br>2.9 | 2.91<br>3.32 | 0.02630            | 1.3<br>0.8   | 0.790<br>0.798 | 0.8<br>0.8 | 0.47<br>0.46 | 50<br>50     | 1        | 104<br>93 | 0.3360           | 0.1336           | 13.5<br>16.5    | 4<br>4 | 4      | ა<br>2 | 10      |
|          | 15188          | 2.9        | 2.74         | 0.07674            | 0.6          | 0.800          | 0.6        | 0.40         | 50           | 1        | 100       | 0.3375           | 0.2329           | 14.7            |        | 4      | 2      | 10      |
| 6<br>7   | 15166          | 3.0        | 2.74         | 0.10013            | 0.5          | 0.834          | 0.5        | 0.32         | 50           | 1        | 100       | 0.3375           | 0.1364           | 12.6            | 4<br>4 | 4      | 4      | 12      |
| 8        | 15170          | 3.6        | 4.06         | 0.22307            | 0.5          | 0.034          | 0.5        | 0.42         | 50           | 1        | 109       | 0.3396           | 0.1504           | 14.6            | 4      | 4      | 3      | 11      |
| 9        | 15170          | 3.6        | 2.90         | 0.11723            | 0.7          | 1.002          | 0.7        | 0.42         | 50           | 1        | 107.1     | 0.3562           | 0.1319           | 12.8            | 4      | 4      | 4      | 12      |
|          | 15195          | 3.0<br>3.7 | 2.90<br>3.47 | 0.19579            | 0.5          | 1.002          | 0.5        | 0.33         | 50<br>50     | 1        | 107.1     | 0.3390           | 0.1212           | 14.1            |        | 4      | 3      | 11      |
| 10       |                |            |              |                    |              | 1.023          |            |              |              | 1        |           |                  | 0.2132           |                 | 4      |        | 3      | 11      |
| 11       | 15192          | 3.7        | 3.27         | 0.14704            | 0.6          | 1.101          | 0.6        | 0.38         | 50<br>50     | 1        | 105       | 0.3401           | 0.2025           | 13.6            | 4      | 4<br>4 |        | 10      |
| 12       | 15201          | 4.0<br>4.2 | 3.94         | 0.05474            | 1.1          |                | 1.1        | 0.65         | 50<br>50     | 1        | 97<br>96  | 0.3375           |                  | 15.4            | 4      | 4      | 2      | 10      |
| 13<br>14 | 15169<br>15167 | 4.2<br>4.6 | 3.80         | 0.08057            | 0.9          | 1.160          | 0.9        | 0.55         | 50<br>50     |          | 109       | 0.3380           | 0.1505           | 15.5            | 4      | 4      |        | 12      |
| 15       |                | 4.0<br>4.7 | 3.55<br>4.65 | 0.18240            | 0.6          | 1.270          | 0.6<br>0.9 | 0.38<br>0.54 | 50<br>50     | 1<br>1   |           | 0.3493           | 0.1365<br>0.2341 | 12.6            | 4      | 4      | 4<br>2 | 10      |
|          | 15198          |            |              | 0.09549            | 0.9          | 1.305<br>1.354 |            |              | 50<br>50     |          | 93<br>96  | 0.3361           | 0.2341           | 16.4            | 4      |        |        | 10      |
| 16       | 15199          | 4.9        | 4.31         | 0.08724            | 1.0          |                | 1.0        | 0.57         | 50<br>50     | 1        |           | 0.3368           |                  | 15.8            | 4      | 4      | 2      |         |
| 17       | 15189          | 5.1        | 6.50         | 0.02502            | 1.8          | 1.424          | 1.4        | 0.85         | 50<br>50     | 1        | 87        | 0.3323           | 0.1998           | 18.4            | 4      | 3      | 1      | 8       |
| 18       | 15162          | 5.3        | 5.83         | 0.05733            | 1.2          | 1.465          | 1.2        | 0.73         | 50<br>50     | 1        | 99        | 0.3453           | 0.1284           | 14.6            | 4      | 4      | 3      | 11      |
| 19       | 15175          | 5.4        | 5.21         | 0.03305            | 1.6          | 1.488          | 1.5        | 0.89         | 50<br>50     | 1        | 90        | 0.3331           | 0.1605           | 17.5            | 4      | 3      | 1      | 8       |
| 20       | 15172          | 5.4        | 5.05         | 0.03509            | 1.6          | 1.495          | 1.5        | 0.90         | 50<br>50     | 1<br>1   | 85        | 0.3295           | 0.1590           | 19.2            | 4      | 3      | 1      | 8       |
| 21       | 15209          | 5.4        | 4.69         | 0.12115            | 0.8          | 1.501          | 0.8        | 0.51         | 50<br>50     | -        | 100       | 0.3401           | 0.1498           | 14.5            | 4      | 4      | 3      | 11      |
| 22       | 15194          | 6.0        | 3.72         | 0.04353            | 1.5          | 1.675          | 1.5        | 0.90         | 50<br>50     | 1        | 92        | 0.3355           | 0.2238           | 16.7            | 4      | 3      | 2      | 9       |
| 23       | 15173          | 6.3        | 4.86         | 0.09928            | 1.0          | 1.760          | 1.0        | 0.61         | 50<br>50     | 1        | 99        | 0.3384           | 0.1586           | 14.8            | 4      | 4      | 2      | 10      |
| 24       | 15193          | 6.4        | 4.77         | 0.11132            | 1.0          | 1.790          | 1.0        | 0.58         | 50<br>50     | 1        | 105       | 0.3400           | 0.2010           | 13.6            | 4      | 4      | 3      | 11      |
| 25       | 15159          | 6.9        | 5.50         | 0.11265            | 1.0          | 1.911          | 1.0        | 0.60         | 50<br>50     | 1        | 103       | 0.3505           | 0.1224           | 13.7            | 3      | 4      | 3      | 10      |
| 26       | 15202          | 6.9        | 5.71         | 0.07879            | 1.2          | 1.916          | 1.2        | 0.71         | 50<br>50     | 1        | 91        | 0.3363           | 0.2512           | 17.1            | 3      | 4      | 1      | 8       |
| 27       | 15200          | 8.5        | 5.97         | 0.08504            | 1.3          | 2.371          | 1.3        | 0.76         | 50<br>50     | 1        | 92        | 0.3361           | 0.2389           | 16.6            | 3      | 4      | 2      | 9       |
| 28       | 15174          | 8.9        | 7.13         | 0.05426            | 1.6          | 2.480          | 1.6        | 0.98         | 50<br>50     | 1        | 95        | 0.3370           | 0.1547           | 15.8            | 3      | 3      | 2      | 8       |
| 29       | 15164          | 9.4        | 7.62         | 0.06062            | 1.6          | 2.603          | 1.6        | 0.95         | 50<br>50     | 1        | 99        | 0.3440           | 0.1324           | 14.7            | 3      | 3      | 2      | 8       |
| 30       | 15218          | 10.0       | 6.92         | 0.05213            | 1.8          | 2.770          | 1.8        | 1.06         | 50<br>50     | 1        | 93        | 0.3357           | 0.2234           | 16.5            | 3      | 3      | 2      | 8<br>10 |
| 31       | 15168          | 10.4       | 7.04         | 0.10129            | 1.3          | 2.881          | 1.3        | 0.77         | 50<br>50     | 1        | 109       | 0.3472           | 0.1419           | 12.7            | 3      |        | 4      |         |
| 32       | 15160          | 10.5       | 5.97         | 0.10686            | 1.3          | 2.921          | 1.3        | 0.76         | 50<br>50     | 1<br>1   | 103       | 0.3497           | 0.1255           | 13.6            | 3      | 4      | 3      | 10      |
| 33       | 15191          | 10.8       | 8.06         | 0.03669            | 2.2          | 2.992          | 2.2        | 1.31         | 50<br>50     | -        | 87<br>100 | 0.3322           | 0.2033           | 18.5            | 3      | 3      | 1      | 7       |
| 34       | 15178          | 11.8       | 7.02         | 0.07999            | 1.5          | 3.283          | 1.5        | 0.93         | 50           | 1        | 100       | 0.3383           | 0.1628           | 14.7            | 3      | 3      | 2      | 8       |
| 35       | 15179          | 13.7       | 8.19         | 0.07080            | 1.8          | 3.814          | 1.8        | 1.06         | 50<br>50     | 1        | 100       | 0.3382           | 0.1654           | 14.7            | 3      | 3      | 2      | 8       |
| 36       | 15165          | 14.3       | 9.91         | 0.05992            | 2.0          | 3.971          | 2.0        | 1.18         | 50<br>50     | 1        | 100       | 0.3436           | 0.1343           | 14.6            | 3      | 3      | 3      | 9       |
| 37       | 15180          | 15.8       | 9.52         | 0.06391            | 2.0          | 4.394          | 2.0        | 1.20         | 50           | 1        | 100       | 0.3383           | 0.1662           | 14.7            | 3      | 3      | 3      | 9       |
| 38       | 15176          | 15.9       | 8.51         | 0.05674            | 2.1          | 4.413          | 2.1        | 1.28         | 50           | 1        | 93        | 0.3352           | 0.1579           | 16.5            | 3      | 3      | 2      | 8       |
| 39       | 15161          | 16.0       | 7.60         | 0.08241            | 1.8          | 4.437          | 1.8        | 1.06         | 50<br>50     | 1        | 108       | 0.3540           | 0.1280           | 12.6            | 3      | 3      | 4      | 10      |
| 40       | 15220          | 16.3       | 11.19        | 0.04042            | 2.6          | 4.525          | 2.6        | 1.53         | 50           | 1        | 95        | 0.3362           | 0.2227           | 16.0            | 3      | 3      | 2      | 8       |
| 41       | 15203          | 16.5       | 7.92         | 0.08573            | 1.8          | 4.595          | 1.8        | 1.06         | 50<br>50     | 1        | 104       | 0.3496           | 0.1275           | 13.5            | 3      | 3      | 4      | 10      |
| 42       | 15221          | 17.4       | 8.47         | 0.06939            | 2.0          | 4.826          | 2.0        | 1.21         | 50<br>50     | 1        | 92        | 0.3362           | 0.2428           | 16.7            | 3      | 3      | 1      | 7       |
| 43       | 15182          | 18.1       | 10.18        | 0.06024            | 2.2          | 5.026          | 2.2        | 1.32         | 50<br>50     | 1        | 100       | 0.3383           | 0.1672           | 14.6            | 3      | 3      | 3      | 9       |
| 44       | 15211          | 20.5       | 11.78        | 0.05450            | 2.5          | 5.691          | 2.5        | 1.48         | 50<br>50     | 1        | 101       | 0.3385           | 0.1690           | 14.5            | 3      | 3      | 3      | 9       |
| 45       | 15222          | 20.9       | 9.86         | 0.06299            | 2.3          | 5.805          | 2.3        | 1.39         | 50           | 1        | 92        | 0.3363           | 0.2440           | 16.8            | 3      | 3      | 1      | 7       |
| 46       | 15247          | 22.7       | 10.43        | 0.06032            | 2.5          | 6.317          | 2.5        | 1.48         | 50           | 1        | 92        | 0.3363           | 0.2440           | 16.7            | 3      | 3      | 1      | 7       |

Segue Tabella 6 - Calcolo dell'indice di predisposizione per i 93 sottobacini del rio di Quirra (IFF).

| N        | HydroID | Area         | Lungh         | Pendm   | Tcorr      | T corri      | Тс         | Tlag         | Pioggia  | Dur      | μ        | Par.             | Par.   | T.ritorno    | iΑ     | iT     | iR | TOT           |
|----------|---------|--------------|---------------|---------|------------|--------------|------------|--------------|----------|----------|----------|------------------|--------|--------------|--------|--------|----|---------------|
|          | ID      | Ab           | Lk            | im      | Tc1        | Tc2          | Tc         |              | h        | τ        | $\mu$ g  | ssd              | kd     | Tr           |        |        |    |               |
| 47       | 15177   | kmq          | km<br>0.70    | 0.05833 | ore<br>2.5 | ore<br>6.394 | ore<br>2.5 | ore          | mm<br>FO | ore<br>1 | mm<br>O1 | 0.2226           | 0.1595 | anni<br>17.2 | 3      | 3      | 1  | 7             |
| 47<br>48 | 15177   | 23.0<br>25.1 | 8.78<br>11.00 | 0.05633 | 2.5<br>2.7 | 6.965        | 2.5<br>2.7 | 1.52<br>1.59 | 50<br>50 | 1        | 91<br>92 | 0.3336<br>0.3364 | 0.1595 | 16.7         | ა<br>2 | ა<br>2 | 1  | <i>7</i><br>5 |
| 49       | 15223   | 26.1         | 13.67         | 0.05744 | 2.6        | 7.250        | 2.6        | 1.58         | 50       | 1        | 101      | 0.3304           | 0.2434 | 14.4         | 2      | 2      | 3  | 7             |
| 50       | 15223   | 27.3         | 13.96         | 0.06031 | 2.7        | 7.581        | 2.7        | 1.62         | 50       | 1        | 101      | 0.3427           | 0.1395 | 14.4         | 2      | 2      | 3  | 7             |
| 51       | 15181   | 28.9         | 10.47         | 0.06031 | 2.8        | 8.039        | 2.8        | 1.67         | 50       | 1        | 90       | 0.3333           | 0.1628 | 17.4         | 2      | 2      | 1  | 5             |
| 52       | 15183   | 32.8         | 11.87         | 0.05642 | 3.1        | 9.112        | 3.1        | 1.84         | 50       | 1        | 90       | 0.3333           | 0.1649 | 17.4         | 2      | 2      | 1  | 5             |
| 53       | 15184   | 34.0         | 12.13         | 0.05551 | 3.1        | 9.444        | 3.1        | 1.89         | 50       | 1        | 90       | 0.3333           | 0.1649 | 17.3         | 2      | 2      | 1  | 5             |
| 54       | 15204   | 34.7         | 10.10         | 0.07013 | 2.8        | 9.643        | 2.8        | 1.70         | 50       | 1        | 106      | 0.3518           | 0.1280 | 13.0         | 2      | 2      | 4  | 8             |
| 55       | 15204   | 36.7         | 10.79         | 0.07013 | 3.0        | 10.200       | 3.0        | 1.80         | 50       | 1        | 106      | 0.3510           | 0.1281 | 13.0         | 2      | 2      | 4  | 8             |
| 56       | 15206   | 39.4         | 11.36         | 0.06311 | 3.2        | 10.200       | 3.2        | 1.91         | 50       | 1        | 107      | 0.3517           | 0.1286 | 13.0         | 2      | 2      | 4  | 8             |
| 57       | 15185   | 40.1         | 13.46         | 0.05209 | 3.5        | 11.139       | 3.5        | 2.12         | 50       | 1        | 91       | 0.3336           | 0.1680 | 17.2         | 2      | 2      | 1  | 5             |
| 58       | 15186   | 41.5         | 13.47         | 0.05204 | 3.6        | 11.530       | 3.6        | 2.16         | 50       | 1        | 91       | 0.3337           | 0.1687 | 17.2         | 2      | 2      | 1  | 5             |
| 59       | 15207   | 43.0         | 12.76         | 0.05709 | 3.5        | 11.940       | 3.5        | 2.09         | 50       | 1        | 107      | 0.3512           | 0.1290 | 13.0         | 2      | 2      | 4  | 8             |
| 60       | 15187   | 44.8         | 14.51         | 0.04911 | 3.8        | 12.443       | 3.8        | 2.30         | 50       | 1        | 91       | 0.3338           | 0.1699 | 17.1         | 2      | 2      | 1  | 5             |
| 61       | 15208   | 45.6         | 13.17         | 0.05535 | 3.7        | 12.664       | 3.7        | 2.19         | 50       | 1        | 107      | 0.3510           | 0.1293 | 13.0         | 2      | 2      | 4  | 8             |
| 62       | 15212   | 58.0         | 14.81         | 0.04823 | 4.4        | 16.097       | 4.4        | 2.65         | 50       | 1        | 90       | 0.3335           | 0.1768 | 17.3         | 2      | 2      | 1  | 5             |
| 63       | 15213   | 60.8         | 15.55         | 0.04654 | 4.6        | 16.897       | 4.6        | 2.76         | 50       | 1        | 91       | 0.3337           | 0.1773 | 17.2         | 2      | 2      | 1  | 5             |
| 64       | 15210   | 63.2         | 16.20         | 0.04632 | 4.7        | 17.556       | 4.7        | 2.82         | 50       | 1        | 107      | 0.3498           | 0.1326 | 13.0         | 2      | 2      | 4  | 8             |
| 65       | 15214   | 63.6         | 16.44         | 0.04461 | 4.8        | 17.653       | 4.8        | 2.88         | 50       | 1        | 91       | 0.3338           | 0.1782 | 17.1         | 2      | 2      | 1  | 5             |
| 66       | 15215   | 67.9         | 17.36         | 0.04318 | 5.0        | 18.869       | 5.0        | 3.03         | 50       | 1        | 91       | 0.3340           | 0.1794 | 16.9         | 2      | 2      | 1  | 5             |
| 67       | 15216   | 71.9         | 17.92         | 0.04192 | 5.3        | 19.964       | 5.3        | 3.16         | 50       | 1        | 92       | 0.3341           | 0.1806 | 16.9         | 2      | 2      | 1  | 5             |
| 68       | 15217   | 74.5         | 20.00         | 0.03845 | 5.6        | 20.684       | 5.6        | 3.36         | 50       | 1        | 92       | 0.3342           | 0.1813 | 16.8         | 2      | 2      | 1  | 5             |
| 69       | 15219   | 82.4         | 25.61         | 0.03168 | 6.5        | 22.881       | 6.5        | 3.89         | 50       | 1        | 93       | 0.3345           | 0.1838 | 16.6         | 2      | 1      | 2  | 5             |
| 70       | 15225   | 95.5         | 17.23         | 0.04387 | 5.9        | 26.538       | 5.9        | 3.56         | 50       | 1        | 105      | 0.3475           | 0.1354 | 13.3         | 2      | 2      | 4  | 8             |
| 71       | 15226   | 96.9         | 17.61         | 0.04311 | 6.0        | 26.906       | 6.0        | 3.62         | 50       | 1        | 105      | 0.3474           | 0.1358 | 13.3         | 1      | 2      | 4  | 7             |
| 72       | 15227   | 100.1        | 18.78         | 0.04089 | 6.3        | 27.799       | 6.3        | 3.78         | 50       | 1        | 105      | 0.3473           | 0.1361 | 13.3         | 1      | 1      | 4  | 6             |
| 73       | 15239   | 100.4        | 26.63         | 0.03085 | 7.3        | 27.887       | 7.3        | 4.35         | 50       | 1        | 93       | 0.3349           | 0.1918 | 16.5         | 1      | 1      | 2  | 4             |
| 74       | 15228   | 101.6        | 19.19         | 0.04025 | 6.4        | 28.218       | 6.4        | 3.83         | 50       | 1        | 105      | 0.3472           | 0.1366 | 13.3         | 1      | 1      | 4  | 6             |
| 75       | 15229   | 104.3        | 19.39         | 0.03991 | 6.5        | 28.981       | 6.5        | 3.90         | 50       | 1        | 105      | 0.3470           | 0.1372 | 13.3         | 1      | 1      | 4  | 6             |
| 76       | 15230   | 105.7        | 19.86         | 0.03911 | 6.6        | 29.348       | 6.6        | 3.97         | 50       | 1        | 105      | 0.3470           | 0.1375 | 13.3         | 1      | 1      | 4  | 6             |
| 77       | 15241   | 107.4        | 29.45         | 0.02824 | 7.8        | 29.845       | 7.8        | 4.71         | 50       | 1        | 94       | 0.3350           | 0.1939 | 16.4         | 1      | 1      | 2  | 4             |
| 78       | 15231   | 107.7        | 20.07         | 0.03865 | 6.7        | 29.924       | 6.7        | 4.03         | 50       | 1        | 105      | 0.3469           | 0.1380 | 13.3         | 1      | 1      | 4  | 6             |
| 79       | 15232   | 129.5        | 20.90         | 0.03730 | 7.5        | 35.985       | 7.5        | 4.50         | 50       | 1        | 105      | 0.3455           | 0.1430 | 13.5         | 1      | 1      | 4  | 6             |
| 80       | 15233   | 132.0        | 21.67         | 0.03633 | 7.7        | 36.669       | 7.7        | 4.60         | 50       | 1        | 105      | 0.3455           | 0.1435 | 13.5         | 1      | 1      | 4  | 6             |
| 81       | 15234   | 134.4        | 22.54         | 0.03492 | 7.9        | 37.347       | 7.9        | 4.74         | 50       | 1        | 105      | 0.3453           | 0.1444 | 13.5         | 1      | 1      | 3  | 5             |
| 82       | 15235   | 138.2        | 23.25         | 0.03407 | 8.1        | 38.385       | 8.1        | 4.86         | 50       | 1        | 105      | 0.3452           | 0.1458 | 13.5         | 1      | 1      | 3  | 5             |
| 83       | 15236   | 151.6        | 25.42         | 0.03151 | 8.8        | 42.124       | 8.8        | 5.29         | 50       | 1        | 105      | 0.3448           | 0.1490 | 13.5         | 1      | 1      | 4  | 6             |
| 84       | 15237   | 153.5        | 26.27         | 0.03080 | 9.0        | 42.645       | 9.0        | 5.39         | 50       | 1        | 105      | 0.3447           | 0.1496 | 13.5         | 1      | 1      | 4  | 6             |
| 85       | 15238   | 160.2        | 26.30         | 0.03076 | 9.2        | 44.507       | 9.2        | 5.51         | 50       | 1        | 105      | 0.3445           | 0.1516 | 13.5         | 1      | 1      | 4  | 6             |
| 86       | 15240   | 169.1        | 30.16         | 0.02729 | 10.0       | 46.983       | 10.0       | 6.01         | 50       | 1        | 105      | 0.3442           | 0.1551 | 13.5         | 1      | 1      | 3  | 5             |
| 87       | 15242   | 278.6        | 32.19         | 0.02583 | 13.2       | 77.392       | 13.2       | 7.93         | 50       | 1        | 100      | 0.3406           | 0.1704 | 14.5         | 1      | 1      | 3  | 5             |
| 88       | 15243   | 283.3        | 33.94         | 0.02449 | 13.7       | 78.681       | 13.7       | 8.21         | 50       | 1        | 100      | 0.3406           | 0.1712 | 14.5         | 1      | 1      | 3  | 5             |
| 89       | 15244   | 290.0        | 34.19         | 0.02442 | 13.9       | 80.547       | 13.9       | 8.32         | 50       | 1        | 100      | 0.3405           | 0.1728 | 14.5         | 1      | 1      | 3  | 5             |
| 90       | 15245   | 291.9        | 35.56         | 0.02360 | 14.1       | 81.088       | 14.1       | 8.49         | 50       | 1        | 100      | 0.3405           | 0.1730 | 14.5         | 1      | 1      | 3  | 5             |
| 91       | 15246   | 297.6        | 36.67         | 0.02292 | 14.5       | 82.656       | 14.5       | 8.70         | 50       | 1        | 100      | 0.3404           | 0.1742 | 14.6         | 1      | 1      | 3  | 5             |
| 92       | 15249   | 327.1        | 37.84         | 0.02222 | 15.4       | 90.852       | 15.4       | 9.26         | 50       | 1        | 99       | 0.3400           | 0.1807 | 14.7         | 1      | 1      | 2  | 4             |
| 93       | 15250   | 328.9        | 38.21         | 0.02208 | 15.5       | 91.358       | 15.5       | 9.32         | 50       | 1        | 99       | 0.3400           | 0.1809 | 14.7         | 1      | 1      | 2  | 4             |

#### 1.7. Valutazione critica dei risultati

La procedura ha esaminato il bacino principale del rio Quirra (circa 329 km²) applicando ad esso la metodologia nota come "metodo Arno" per la valutazione della propensione dei singoli sottobacini idrografici ai fenomeni di piena improvvisa (flash flood). Come ampiamente documentato nella letteratura tecnica e come peraltro riportato nella relazione metodologica dell'Agenzia regionale del Distretto idrografico della Sardegna (ADIS), la durata della fase di concentrazione dell'idrogramma di piena dipende da molteplici grandezze ricondotte spesso

alle caratteristiche morfometriche, al tipo idrologico di suolo e al suo contenuto idrico nelle fasi temporali antecedenti l'evento.

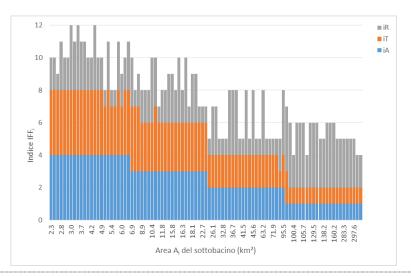



Figura 17 - Contributo di ciascuna componente parametrica i<sub>R</sub>, i<sub>T</sub> e i<sub>A</sub> al valore finale del IFF<sub>i</sub>

Dall'esame delle figure precedenti e in particolare riguardo alla *Figura 16*, si evince che la maggiore predisposizione ai fenomeni in argomento sia riferita soprattutto a piccoli bacini, considerando che tutti i bacini con area minore di 5 kmg possiedono IFF compreso tra 9 e 12.

Nel grafico della *Figura 17* è rappresentata distintamente ciascuna componente dell'indice IFF, riportando in ascissa i sottobacini idrografici ordinati per aree crescenti: dal grafico è evidente come le componenti parametriche Area  $(i_A)$  e Tempo di ritardo  $(i_R)$  abbiano un peso preponderante rispetto alla componente  $i_T$  (tempo di ritorno dell'evento critico) sul valore finale di IFF=  $i_A$  +  $i_T$ +  $i_R$ . Si osserva inoltre che le componenti  $i_A$  e  $i_R$  per ciascun bacino hanno sempre valori di contributo simili tra di loro: tale aspetto è da ricondursi alle formule del tempo di corrivazione, nelle quali l'area del bacino compare come fattore proporzionale.

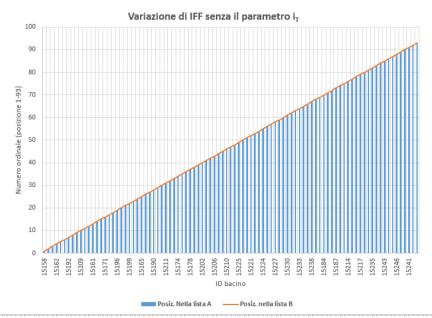



Figura 18 - Influenza del contributo delle componenti  $i_T$  e  $i_R$  nella determinazione dell'indice IFF: confronto della posizione del bacino nella lista A (istogramma) con quella nella lista B (linea continua) senza il contributo del parametro  $i_T$ . Si osserva la totale corrispondenza delle posizioni.

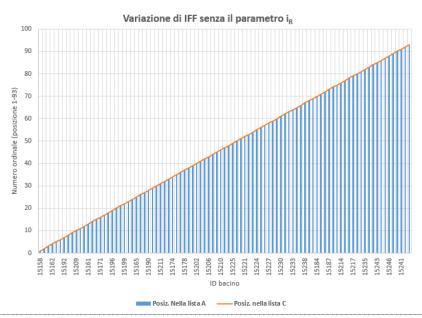



Figura 19 - Influenza del contributo delle componenti  $i_T$  e  $i_R$  nella determinazione dell'indice IFF : confronto della posizione del bacino nella lista A (istogramma) con quella senza il contributo del parametro  $i_R$  relativo al  $T_{LAG}$  nella lista C (linea continua). Si osserva la totale corrispondenza delle posizioni.

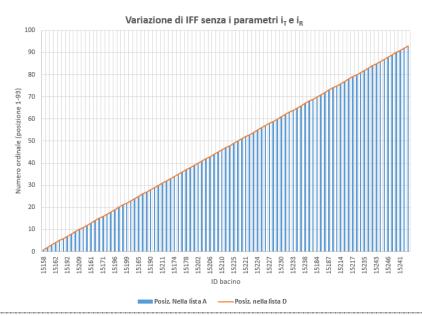



Figura 20 - Influenza del contributo delle componenti  $i_T$  e  $i_R$  nella determinazione dell'indice IFF. La corrispondenza tra le liste A e D anche in questo caso è totale: pertanto le componenti  $i_T$  e  $i_R$  sono ininfluenti rispetto a quella relativa all'area di ciascun sottobacino.

Con l'obbiettivo di valutare l'informazione fornita dai parametri utilizzati nel metodo Arno applicato al bacino campione analizzato, è stato studiato il contributo all'indice complessivo IFF effettivamente fornito dalle varie componenti i<sub>A</sub>, i<sub>T</sub>, e i<sub>R</sub>. A tal fine, dapprima l'elenco dei bacini è stato ordinato per valori decrescenti dell'indice IFF, questo determinato con il contributo di tutte le componenti dei parametri, come previsto originariamente dal metodo. Come criterio secondario di ordinamento, i bacini con il medesimo valore di IFF sono stati disposti secondo valori decrescenti dei codici numerici univoci con i quali ciascun sottobacino è stato individuato (colonna HydroID della *Tabella 6*). Tale elenco è stato di seguito indicato come "lista A".

Quindi si è proceduto escludendo l'apporto della componente  $i_T$  del tempo di ritorno calcolando l'indice di predisposizione  $IFF_{AR}=i_A+i_R$  considerando il solo contributo della coppia di componenti  $i_A$ ,  $i_R$  e, ordinando i bacini per valori decrescenti di  $IFF_{AR}$ . Tale nuova lista è indicata come "lista B".

Successivamente, si è proceduto escludendo la componente  $i_R$ . del tempo di ritardo ed è stata considerata una ulteriore lista ("lista C") ottenuta ordinando i bacini per valori decrescenti di  $IFF_{AT} = i_A + i_T$  considerando il contributo della coppia di componenti  $i_A$  e  $i_T$ .

Infine è stata predisposto l'elenco dei bacini ordinati per  $IFF_A$  decrescente calcolato con il solo contributo della componente  $i_A$  ("lista D").

In tutte le 4 liste di pericolosità relativa così ottenute, le posizioni dei bacini (univocamente distinti e, per quelli con il medesimo valore di IFF, disposti secondo valori decrescenti dei codici identificativi univoci) sono individuate mediante un indice di posizione.

Il risultato è rappresentato nei grafici della *Figura 18*, *Figura 19*, *Figura 20* dove con le barre dell'istogramma sono indicate le posizioni assunte dai vari bacini nella lista A rispetto a quella che essi possiedono rispettivamente nella lista B, nella lista C e nella lista D.

Come evidenziato dalle figure, le posizioni dei sottobacini nelle liste precedenti sono identiche. Nell'applicazione al bacino idrografico sotteso alla foce del rio di Quirra, si conferma quindi come sia il parametro  $i_R$  che  $i_T$  non forniscano sostanziali indicazioni aggiuntive sulla predisposizione alle piene improvvise rispetto al parametro  $i_A$  il quale a sua volta può essere considerato intercambiabile con il parametro  $i_R$ .

Pertanto, in considerazione dei risultati ottenuti, la predisposizione ai fenomeni di flash flood indicata dal metodo "Arno" potrebbe essere valutata anche soltanto sulla base dell'area del sottobacino, parametro di assai più agevole e univoca determinazione rispetto al  $T_{LAG}$  e al tempo di ritorno di un evento di progetto prestabilito.

#### 1.8. Massime altezze annue di pioggia giornaliera

Alcune considerazioni sul regime pluviometrico in Sardegna possono essere effettuate dall'analisi statistica delle precipitazioni su base sia oraria che giornaliera rilevate dai pluviometri presenti nel territorio regionale, tenendo conto della più ampia continuità della serie storica e dei siti di osservazione.

Come accennato in premessa, lo studio dei fenomeni meteorici intensi ed estremi in Sardegna, finalizzato all'applicazione nella progettazione delle opere ingegneristiche o in ambito pianificatorio al controllo del rischio idraulico, ha approfondito la problematica della stima dei cumulati di precipitazione relativi ad eventi di assegnata durata e tempo di ritorno (curve di possibilità pluviometrica) con vari approcci statistici approfondendo le indagini sia dal punto di vista metodologico che con riferimento alla base dati disponibile, assumendo come ipotesi di fondo la stazionarietà delle serie osservate.

Come aggiornamento dei modelli probabilistici allora in uso, in (Deidda & Sechi, 2000) è stato applicato alla Sardegna il modello statistico a 2 componenti valutando primariamente la frequenza delle massime piogge giornaliere della base dati rilevata dal Servizio Idrografico dal 1922: in *Figura 21* è rappresentata la carta delle isoiete con la distribuzione spaziale della pioggia indice giornaliera (la media delle massime altezze annue di precipitazione giornaliera) con riferimento alla serie storica dal 1922 fino al 1990. Nella carta sono stati considerati i valori di precipitazione giornaliera nei siti pluviometrici (*Tabella 7*) con almeno 40 anni di osservazioni, interpolati nell'intero territorio regionale con il metodo kriging.

Successivamente è stato recentemente proposto l'aggiornamento delle curve di possibilità pluviometrica (RAS-DICAAR Università di Cagliari, 2018) con un modello di approccio geostatistico che utilizza l'aggiornamento della distribuzione spaziale della pioggia indice giornaliera elaborata considerando il campione costituito da stazioni pluviometriche con almeno 50 anni di osservazioni.

La carta delle isoiete di *Figura 22* rappresenta la distribuzione spaziale della pioggia indice valutata considerando un campione di dati temporalmente più esteso di circa un ventennio rispetto a quello considerato in (Deidda & Sechi, 2000). Anche in questo caso, i valori di pioggia indice nei siti privi di osservazioni sono stati valutati con un interpolatore esatto.

Il confronto tra le carte delle isoiete di pioggia indice consente di osservare come in talune aree sia presente una debole tendenza verso la flessione della media dei massimi cumulati giornalieri e, ad esempio, l'aumento dei valori nella zona orientale dell'Isola e nel versante capoterrese.

Nella *Figura 23* sono riportate le differenze spaziali di pioggia indice elaborate sulla base delle carte delle isoiete.

Alcune verifiche di tipo puntuale sono state eseguite considerando i siti della *Tabella 7* corrispondenti alle località delle stazioni di monitoraggio pluviometrico e hanno riguardato l'analisi della variazione del tempo di ritorno attribuito all'evento critico assunto a riferimento: dalla *Figura 24* si rileva come, per i siti di osservazione della *Tabella 7*, i valori attribuiti mediante la curva di possibilità pluviometrica ottenuta mediante l'impiego della distribuzione GEV in (RAS-DICAAR Università di Cagliari, 2018) si presentano frequentemente minori rispetto a quelli ottenuti mediante le curve di possibilità pluviometrica della distribuzione TCEV di (Deidda & Sechi, 2000).

A tale proposito si osserva comunque che tali risultati sono stati ottenuti utilizzando approcci metodologici differenti, applicati a base dati pluviometriche che si differenziano per un arco temporale comunque non molto esteso e dunque il significato da attribuire a tali considerazioni deve essere accuratamente valutato anche in relazione alla cronologia degli eventi intensi ed estremi che si sono manifestati tra il 1980 e il 2008 e che certamente hanno influenzato i valori delle medie rappresentate nella *Figura 22*.

Tabella 7 - Siti pluviometrici

| IDPK | DENOMINAZIONE                     | COORD E            | OORD N             | IDPK         | DENOMINAZIONE            | COORD E CO         | OORD N             |
|------|-----------------------------------|--------------------|--------------------|--------------|--------------------------|--------------------|--------------------|
| 120  | COLONIA PENALE (SARCID.)          | 1512420            | 4406680            | 850          | OSIDDA                   | 1514310            | 4486300            |
| 130  | IS ACQUAS (SARCIDANO)             | 1509920            | 4401360            | 860          | BENETUTTI                | 1514420            | 4478240            |
| 110  | VILLAMAR                          | 1496580            | 4385380            | 830          | BOTTIDA                  | 1501060            | 4470690            |
| 100  | LUNAMATRONA                       | 1491220            | 4389070            | 810          | RIFORNITORE TIRSO        | 1502860            | 4463940            |
| 150  | MANDAS                            | 1511240            | 4390110            | 870          | SIG. MARTA               | 1511550            | 4463770            |
| 180  | SEGARIU                           | 1498560            | 4379260            | 880          | ORANI                    | 1515400            | 4455620            |
| 70   | MONTIMANNU                        | 1471070            | 4360720            | 800          | BOLOTANA                 | 1496590            | 4464290            |
| 80   | VILLACIDRO                        | 1477850            | 4368200            | 890          | OTTANA                   | 1504670            | 4453830            |
| 240  | NURAMINIS                         | 1501180            | 4365910            | 750          | MACOMER                  | 1480690            | 4457680            |
| 250  | VILLASOR                          | 1495140            | 4359100            | 740          | BORORE                   | 1484110            | 4452360            |
| 60   | VALLERMOSA                        | 1482420            | 4357110            | 770          | NORAGUGUME               | 1493180            | 4452820            |
| 160  | GESICO                            | 1511100            | 4383500            | 910          | FONNI                    | 1521730            | 4440790            |
| 170  | GUASILA                           | 1504030            | 4379180            | 920          | GAVOI                    | 1516470            | 4445440            |
| 200  | SENORBI'                          | 1511560            | 4375730            | 930          | TIANA                    | 1512700            | 4435330            |
| 190  | SANT'ANDREA FRIUS                 | 1511500            | 4369910            | 780          | SEDILO                   | 1493160            | 4447100            |
| 210  | BARRALI                           | 1508488            | 4370560            | 730          | GHILARZA                 | 1486140            | 4441290            |
| 255  | DECIMOMANNU                       | 1496630            | 4351120            | 710          | SANTA CHIARA D'ULA       | 1488890            | 4433520            |
| 20   | IGLESIAS                          | 1460250            | 4351120            | 1070         | BUSACHI                  | 1491190            | 4433320            |
| 30   | SAN GIOVANNI DOMUSNOVAS           | 1467790            | 4354270            | 950          | DESULO                   | 1519640            | 4431330            |
| 40   | VILLAMASSARGIA                    | 1467790            | 4347460            | 960          | TONARA                   | 1514980            | 4429420            |
| 50   | SILIQUA                           | 1483390            | 4347460            | 970          | COSSATZU                 | 1514960            |                    |
| 280  | CAPOTERRA                         | 1403390            | 4336180            | 1010         | SORGONO                  | 1515440            | 4421450<br>4430790 |
|      |                                   |                    |                    |              |                          |                    |                    |
| 290  | IS CANNONERIS                     | 1487300            | 4320690<br>4317950 | 1000         | AUSTIS<br>ORTUERI        | 1507650<br>1498920 | 4435710            |
| 310  | PULA                              | 1500250<br>1488230 |                    | 1005         |                          |                    | 4431820            |
| 340  | DOMUSDEMARIA                      |                    | 4310610            | 1030         | LACONI                   | 1504360            | 4411820            |
| 350  | TEULADA                           | 1480350            | 4313450            | 1040         | GENONI                   | 1500700            | 4404880            |
| 345  | SANT'ANNA ARRESI                  | 1468930            | 4317440            | 1050         | SAMUGHEO                 | 1494990            | 4421990            |
| 370  | PANTALEO                          | 1482550            | 4326820            | 1060         | ALLAI                    | 1488480            | 4423060            |
| 380  | SANTADI<br>DOSAS (NA re)          | 1475450            | 4327200            | 720          | ABBASANTA                | 1484600            | 4441710            |
| 400  | ROSAS (M.ra)                      | 1475480            | 4339810            | 700          | PAULILATINO              | 1479880            | 4437020            |
| 410  | TERRASEU                          | 1467690            | 4339510            | 1100         | MOGORELLA                | 1487930            | 4412870            |
| 450  | SANT'ANTIOCO                      | 1453100            | 4324210            | 1090         | SIMAXIS                  | 1473530            | 4420110            |
| 460  | CARLOFORTE                        | 1440600            | 4332260            | 1110         | RIOLA SARDO              | 1460780            | 4427470            |
| 480  | FLUMENTEPIDO                      | 1455280            | 4337780            | 1140         | SANTULUSSURGIU           | 1470430            | 4443630            |
| 495  | MONTEPONI                         | 1457660            | 4350150            | 1150<br>1170 | SENEGHE                  | 1467010            | 4436810            |
| 500  | SU ZURFURU                        | 1456970            | 4363490            |              | TEGA                     | 1459600            | 4445000            |
| 510  | FLUMINIMAGGIORE                   | 1456910            | 4365400            | 1190         | TRESNURAGHES<br>CUGLIERI | 1459590            | 4456380            |
| 520  | MONTEVECCHIO                      | 1463140            | 4378700            | 1180         |                          | 1463250            | 4448970<br>4483660 |
| 530  | GONNOSFANADIGA                    | 1470950            | 4371530            | 1200         | VILLANOVA MONTELEONE     | 1455410            |                    |
| 540  | SAN GAVINO MONREALE               | 1482020            | 4377920            | 1205         | REINAMARE (C.RA)         | 1462400            | 4479980            |
| 550  | SARDARA                           | 1484550            | 4385190            | 1215         | CAMPEDA F.S.             | 1481760            | 4464130            |
| 560  | PABILLONIS                        | 1475960            | 4382700            | 1250         | SINDIA                   | 1470820            | 4460930            |
| 570  | VILLAVERDE                        | 1484710            | 4405080            | 8045         | BOSA                     | 1457600            | 4460950            |
| 580  | ALES                              | 1484720            | 4401710            | 1280         | ITTIRI                   | 1463550            | 4493880            |
| 590  | BARADILI                          | 1491190            | 4396630            | 1290         | PUTIFIGARI               | 1454400            | 4490370            |
| 600  | MOGORO                            | 1481050            | 4392620            | 1300         | RUDAS                    | 1447690            | 4495810            |
| 610  | URAS                              | 1474540            | 4394430            | 1310         | OLMEDO                   | 1447400            | 4500210            |
| 670  | ARBOREA                           | 1464120            | 4402760            | 1360         | THIESI                   | 1476220            | 4486080            |
| 630  | MARRUBIU<br>SANTIANNA DI ODISTANO | 1471000            | 4402420            | 1370         | PIANU                    | 1469550            | 4491110            |
| 640  | SANT'ANNA DI ORISTANO             | 1468140            | 4409400            | 1390         | URI                      | 1457000            | 4498470            |
| 650  | SANTA GIUSTA                      | 1466560            | 4413930            | 1640         | PLOAGHE                  | 1478550            | 4501530            |
| 680  | ORISTANO                          | 1466090            | 4417020            | 1440         | OSILO                    | 1472280            | 4510430            |

Segue Tabella 7 - Siti pluviometrici

| IDPK | DENOMINAZIONE          | COORD E            | COORD N            | IDPK         | DENOMINAZIONE        | COORD E | COORD N            |
|------|------------------------|--------------------|--------------------|--------------|----------------------|---------|--------------------|
| 8052 | BUNNARI                | 1467850            | 4507550            | 2200         | TALANA               | 1542410 | 4432450            |
| 8315 | SASSARI R.U.           | 1462430            | 4508040            | 8129         | GENNA SCALAS         | 1551330 | 4437090            |
| 8109 | FERMATA S. GIORGIO     | 1454930            | 4504550            | 2210         | BAUNEI               | 1556780 | 4431300            |
| 8165 | MACCIADOSA (C.RA)      | 1449610            | 4509010            | 2220         | VILLAGRANDESTRISAILI | 1543300 | 4423600            |
| 1450 | SENNORI                | 1465860            | 4515530            | 2230         | TORTOLI'             | 1556270 | 4419850            |
| 1460 | PORTOTORRES            | 1449670            | 4515550            | 2240         | ARZANA               | 1530270 |                    |
|      | SAN GIOVANNI COGHINAS  |                    |                    | 2250         |                      |         | 4418760            |
| 1470 |                        | 1479510            | 4525780            |              | LANUSEI              | 1545990 | 4414520            |
| 1590 | TORRALBA               | 1479860<br>1484670 | 4485000            | 2260         | BARISARDO<br>IERZU   | 1555070 | 4410470<br>4406090 |
| 1630 | ARDARA                 | 1492190            | 4498070<br>4495990 | 2280<br>2290 |                      | 1543830 |                    |
| 1600 | CHILIVANI              |                    |                    |              | GENNA CRESIA         | 1547380 | 4403890            |
| 1560 | OZIERI                 | 1500330            | 4492640            | 2310         | TERTENIA             | 1549370 | 4394410            |
| 1620 | FRAIGAS                | 1499150            | 4497570            | 8174         | MASONEDILI           | 1550620 | 4386120            |
| 1610 | OSCHIRI                | 1508450            | 4507600            | 2300         | PERDASDEFOGU         | 1537830 | 4392560            |
| 1510 | MONTI                  | 1527500            | 4517200            | 2320         | SANTA BARBARA        | 1551220 | 4374700            |
| 1530 | ZUIGHE                 | 1531000            | 4511900            | 8265         | RIO GIRONI           | 1551950 | 4368890            |
| 1520 | MAZZINAIU C.ra         | 1531420            | 4506600            | 2520         | SICCA D'ERBA         | 1542310 | 4417140            |
| 1500 | CADDAU                 | 1507710            | 4519350            | 2510         | PIRA ONNI            | 1534440 | 4429720            |
| 1480 | COGHINAS C.ra          | 1495990            | 4523570            | 2420         | SEULO                | 1520160 | 4413430            |
| 1660 | MARTIS                 | 1483960            | 4514280            | 2470         | ESTERZILI            | 1521870 | 4404360            |
| 1670 | SEDINI                 | 1484630            | 4522240            | 2400         | VILLANOVATULO        | 1518320 | 4401430            |
| 1680 | PERFUGAS               | 1490370            | 4519860            | 2390         | NURRI                | 1519700 | 4396860            |
| 1700 | SANTA MARIA COGHINAS   | 1490590            | 4528880            | 2440         | SEUI                 | 1527940 | 4409760            |
| 1730 | AGLIENTU               | 1509510            | 4547450            | 2450         | SADALI               | 1523090 | 4407320            |
| 1740 | S. TERESA DI GALLURA   | 1515900            | 4565590            | 2380         | GONI                 | 1524600 | 4380900            |
| 1760 | CURADOREDDU            | 1510750            | 4523700            | 2370         | BALLAO               | 1530980 | 4377850            |
| 1770 | TEMPIO                 | 1508800            | 4528050            | 2530         | GAIRO TAQUISARA      | 1539810 | 4411970            |
| 1780 | AGGIUS                 | 1505450            | 4530900            | 2560         | ESCALAPLANO          | 1529870 | 4386130            |
| 1790 | PADULO C.ra            | 1508000            | 4533000            | 2350         | SAN NICOLO' GERREI   | 1526170 | 4372100            |
| 1800 | CALANGIANUS            | 1516300            | 4530200            | 2340         | VILLASALTO           | 1533670 | 4371510            |
| 1810 | LUOGOSANTO             | 1517210            | 4544530            | 2360         | ARMUNGIA             | 1532550 | 4374880            |
| 1820 | BASSACUTENA            | 1521970            | 4550980            | 2330         | MURAVERA             | 1548490 | 4364000            |
| 1840 | PALAU                  | 1532150            | 4558990            | 2570         | CAMPUOMU C.ma        | 1534060 | 4350700            |
| 1860 | SAN PANTALEO           | 1539320            | 4544110            | 2585         | MONTE ACUTO (Cra)    | 1541120 | 4356200            |
| 8278 | S. MARIA D'ARZACHENA   | 1531210            | 4547940            | 2620         | VILLASIMIUS          | 1544930 | 4332830            |
| 1890 | OLBIA                  | 1542780            | 4530430            | 2630         | BURCEI               | 1530860 | 4355270            |
| 8264 | RIFORNITORE N. 10 F.C. | 1521710            | 4525650            | 2640         | CORONGIU             | 1524230 | 4351320            |
| 1940 | TARONI C.ra            | 1525000            | 4527100            | 2660         | SA PIRA              | 1516090 | 4351160            |
| 1960 | MURTA MARIA            | 1549390            | 4526810            | 2670         | SETTIMO SAN PIETRO   | 1515160 | 4348870            |
| 1970 | MONTE PEDROSU          | 1555080            | 4521490            | 220          | DOLIANOVA            | 1514480 | 4358610            |
| 1535 | ALA' DEI SARDI         | 1527880            | 4500030            | 2700         | SESTU                | 1504725 | 4351809            |
| 2020 | LULA                   | 1541340            | 4480090            | -9991        | Palmas C.ra          | 1461780 | 4324540            |
| 2040 | TORPE'                 | 1557250            | 4497660            | 1851         | GUARDIA VECCHIA      | 1534230 | 4564100            |
| 2070 | ORGOSOLO               | 1530150            | 4450530            | -9992        | S. Lucia C.ra        | 1565590 | 4491785            |
| 2080 | MAMOIADA               | 1524260            | 4451510            | 55           | CAMPANASISSA         | 1480755 | 4339724            |
| 2090 | OLIENA                 | 1534410            | 4458410            |              |                      |         |                    |
| 2095 | NOCE SECCA (C.RA)      | 1548940            | 4456190            |              |                      |         |                    |
| 2100 | DORGALI                | 1550110            | 4460210            |              |                      |         |                    |
| 2120 | NUORO                  | 1527280            | 4463370            |              |                      |         |                    |
| 2140 | GALTELLI'              | 1552230            | 4470950            |              |                      |         |                    |
| 2170 | OROSEI                 | 1559260            | 4470230            |              |                      |         |                    |
| 2180 | GENNA SILANA           | 1543280            | 4445540            |              |                      |         |                    |
| 2190 | GIUSTIZIERI            | 1545230            | 4438690            |              |                      |         |                    |

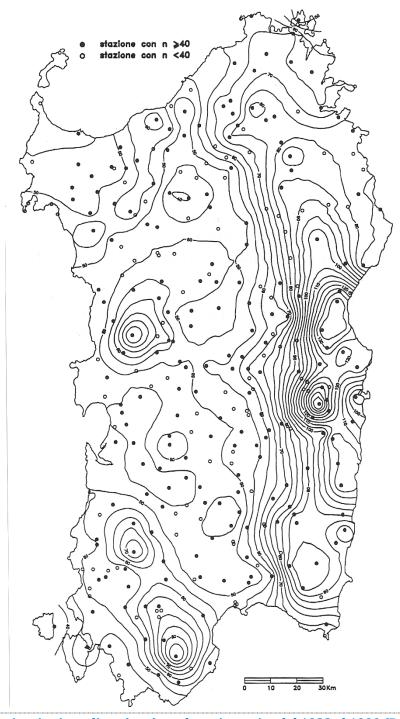



Figura 21 - Isoiete di pioggia giornaliera (mm) per la serie storica dal 1922 al 1990 (Deidda & Sechi, 2000)

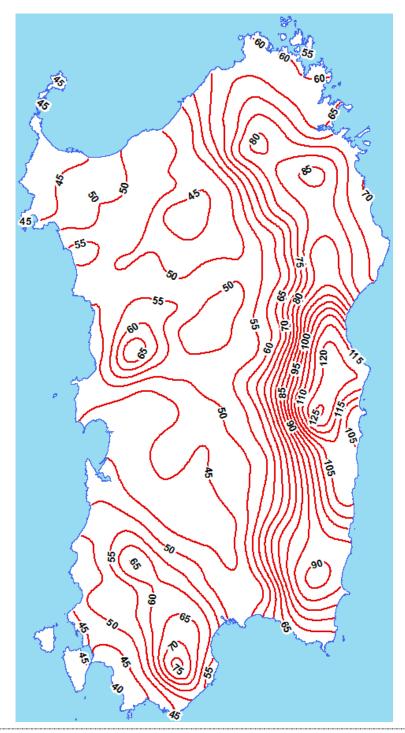



Figura 22 - Isoiete di pioggia giornaliera (mm) per la serie storica dal 1922 al 2008 (RAS, 2016)

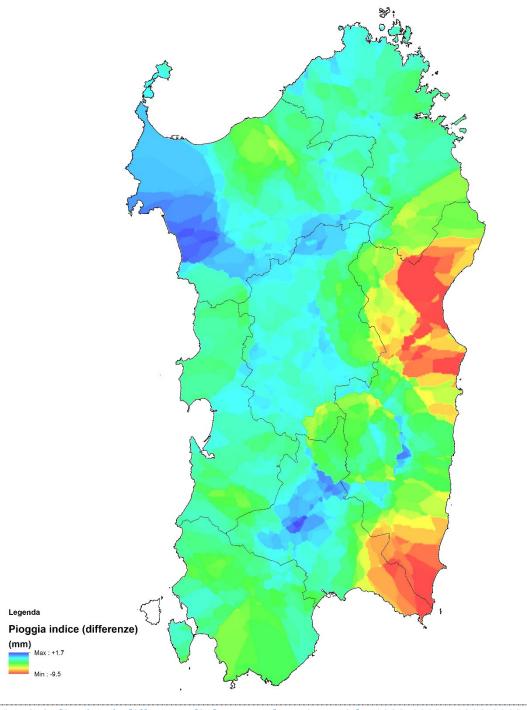
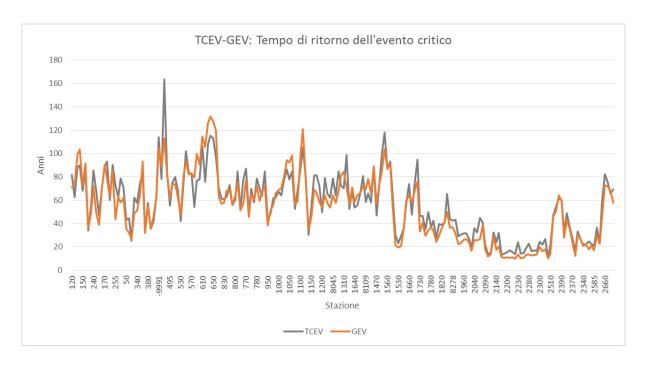




Figura 23 - Pioggia indice (mm): differenze di altezza tra le serie storiche 1922-1990 e 1922-2008



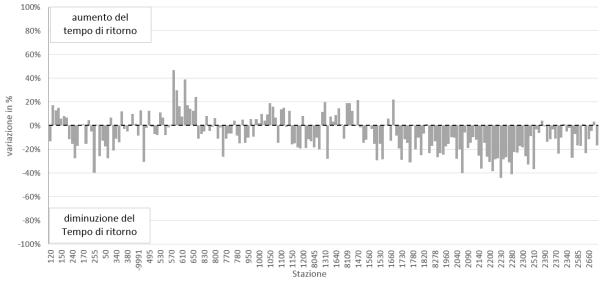



Figura 24 - Analisi della variazione del tempo di ritorno corrispondente all'evento di riferimento in 200 località dell'Isola, determinate mediante le CPP con l'impiego della distribuzione TCEV (approccio regionalizzato) e della distribuzione GEV (approccio geostatistico).

### 1.9. Bibliografia

Bracken, L., & Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic systems. *Hydrol. Process*, 749–1763.

Cao, C., Pazzaglia, G., & Puddu, P. (1969). Determinazione statistica delle curve di possibilità pluviometrica. Applicazione alle piogge di durata inferiore alle 24 ore in Sardegna. *Convegno nazionale sull'Idrologia e la Sistemazione dei piccoli bacini*.

Cao, C., Salis, M., Sechi, G. M., & Silvano, R. (1980). *Studio dell'Idrologia Superficiale della Sardegna*. Cagliari: Cassa per il Mezzogiorno, Regione Sardegna.

Cao, C., Sechi, G. M., & Becciu, G. (1988). Analisi regionale per la valutazione probabilistica delle piene in Sardegna., (p. 17-28). L'Aquila.

Deidda, R., & Sechi, G. M. (2000). Analisi regionale di frequenza delle precipitazioni intense in Sardegna. *L'Acqua*, 29-38.

Distretto Idrografico dell'Appennino Settentrionale. (2010). *Metodologia per la definizione* della predisposizione al verificarsi di fenomeni tipo Flash Flood nel bacino del fiume Arno (a cura di M. Brugioni e B.Mazzanti).

Elkhrachy, I. (2015). Flash flood hazard mapping using satellite image and GIS tools: a case study of Najran city, Kingdom of Saudi Arabia KSA. *Egyptian Journal of Remote Sensing and Space Science*.

Fassò, C. (1969). Rapporto regionale: Sardegna. *Convegno nazionale sull'idrologia e la sistemazione dei piccoli bacini*, (p. 235-249). Roma.

GNDCI-CNR. (1991). Rapporto Regionale Sardegna: Valutazione delle piene in Sardegna. Cagliari.

McGuire, K., & McDonnell, J. (2010). Hydrological connectivity of hillslopes and streams: characteristic time scales and nonlinearities. *Water Resour. Res.* 

Merheb, M., Moussa, R., Abdallah, C., Colin, F., Perrin, C., & Baghdadi, N. (2016). Hydrological response characteristics of Mediterranean catchments at different time scales: a meta-analysis. *Hydrol. Sci. Jour.* 

RAS-DICAAR Università di Cagliari. (2018). Aggiornamento delle curve di possibilità pluviometrica per la Regione Sardegna. Cagliari.

Rinat, Y., Marra, F., Zoccatelli, D., & Morin, E. (2018). Controls of flash flood peak discharge in Mediterranean basins and the special role of runoff-contributing areas. *Journal of Hydrology*.

Salis, M., & Sechi, G. M. (1980). *Metodi di valutazione delle portate di piena con riferimento alla Sardegna*. Cagliari: Atti della facoltà di ingegneria.